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ABSTRACT

Execution variance among different invocation instances of the
same procedure is often an indicator of performance losses. On the
one hand, instrumentation-based tools can insert calipers around
procedures and identify execution variance; however, they can
introduce high overheads. On the other hand, sampling-based tools
insert no instrumentation and have low overheads; however, they
cannot synchronize samples with procedure entry and exit.

In this paper, we propose FVSampler, a lightweight, sampling-
based variance profiler. FVSampler employs hardware performance
monitoring units in conjunction with hardware debug registers to
sample and monitor whole procedure instances (invocation till
return) and collect hardware metrics in each sampled procedure
instance. FVSampler, typically, incurs only 6% runtime overhead
and negligible memory overhead making it suitable for HPC-scale
production codes. We evaluate FVSampler with several parallel
applications and demonstrate its effectiveness in pinpointing ex-
ecution variance. Guided by FVSampler, we tune data structures
and algorithms to obtain significant speedups.
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1 INTRODUCTION

High-performance computing (HPC) software has become increas-
ingly complex; it includes large amounts of source code, sophisti-
cated control and data flow, a hierarchy of component libraries, and
growing levels of abstractions. Application developers can easily
introduce performance inefficiencies embedded deep in the code
bases that are difficult to identify. Such performance inefficiencies
prevent software from enjoying the full system capacity. Perfor-
mance tools are necessary to pinpoint performance bottlenecks and
guide code optimization.

Application developers primarily think of code in terms of func-
tions (aka procedures) which form mental boundaries of function-
ality. It is natural that when developers investigate performance
problems, they often want to see the execution metrics at function
level granularity. Almost all performance tools facilitate function
level attribution; in fact, most tools offer finer-grained attribution
such as loops or statements with call path attribution. A recent
line of work has investigated procedure instance level variance as a
major cause for performance problems such as long tail latency [16–
18, 20, 29] particularly in the enterprise cloud systems. This paper
targets the procedure instance level execution variance in the HPC
domain. Variance is a concern in HPC domain as well, as we show
with a motivating example in Section 1.1 and several case studies
in our evaluation section.

A prerequisite of profiling for variance among procedure in-
stances is the ability to place monitoring calipers around procedure
entry and exit. This allows comparing the metrics from two or more
instances of invocation of the same procedure within the same exe-
cution. Instrumentation-based tools [6, 14, 19, 35, 40, 41, 48] avail
themselves to procedure instance level metrics because the instru-
mentation can be placed at the entry and exit of a procedure; in
fact, even finer-grained placement such as statements or instruc-
tions is also possible. They can count resources consumed by any
invocation instance of the same code region albeit the overhead
can be non-trivial (∼2×).

Sampling-based tools [1, 9, 11, 15, 31, 48, 59], on the other hand,
use interrupt-based mechanism supported by hardware perfor-
mance monitoring units (PMU) or operating system (OS) timers,
attribute samples to code regions, and highlight hotspots based on
the number of samples taken in the same code region. Expecting a
PMU sample to be delivered precisely at the entry of a procedure
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instance and the immediate next sample to be delivered precisely at
the exit of that procedure instance is wishful thinking but impracti-
cal for almost any PMU or timer-based sampling tool. Each sample
is a point in time, one sample cannot be compared with another
sample quantitatively. Hence, identifying execution variance of
the same procedure across different invocation instances is seem-
ingly impossible1. There is little variance between two samples
since each one is delivered after the same number of preconfigured
events. Furthermore, variance among procedure instances is not
statistically significant in a sampling-based profiler if the sampling
interval is larger than the execution time of the procedure itself.
In summary, sampling-based tools, until now, have not been able to
synchronize samples with procedure boundaries.

Measuring the variance across procedure invocation instances
requires starting and stopping measurements at procedure entry
and exit. This act of starting and stopping measurements at every
procedure entry and exit is equivalent to placing instrumentation,
which defeats the purpose of lightweight sampling. Hence, there is
a dilemma, how can we enjoy the low overhead of sampling and yet
collect meaningful measurements at procedure instance boundaries
so that we can compare execution variance across two or more
invocations of the same procedure? We would like to emphasize
that we are interested in the variance of two or more execution
instances of the same procedure in a single execution2. However, we
would like to collect such variance for a large number of procedures
that the program executes and we would like to do so in a single
profiling session.

We address the aforementioned problem in FVSampler, a light-
weight sampling-based variance profiler with the ability to show
procedure instance level execution variance. FVSampler employs
PMUs to sample function call (entry) and then uses debugs registers
to intercept the return (exit) from the same function invocation and
measures metrics between these two points. The metrics can be
any of the supported PMU events, e.g., CPU cycles, cache misses,
energy consumption, to name a few. The key differentiating aspect
of FVSampler when compared to a large class of profilers is its
ability to intercept function call and return with no instrumenta-
tion (source or binary) and prior knowledge of the program, which
makes it useful in production. A thorough evaluation on several
parallel applications shows that quantifying variance on per sam-
pled function invocation offers new avenues into understanding
performance losses; mitigating the causes of variance enhances
performance.

In the rest of this section, we first describe a motivating example,
showing that identifying execution variance in HPC code bases
yields unique optimization opportunities. We then summarize the
contribution of this paper and overview the paper organization.

1One may be able to approximately infer procedure boundaries by looking at consecu-
tive samples taken in the same procedure, however, this method is inaccurate for a
small procedure called in a loop when consecutive samples across multiple invocations
of the same procedure are not interleaved by a sample in another procedure.
2Comparing total samples taken by two different procedures or procedures from
two different threads or processes is straightforward and available in almost all HPC
profilers, sampling or otherwise.
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Figure 1: Access order and storage order of an array of particles (p[])
in GTC. (a) At the program start, particles are stored in cell order,

which exactlymatches access order. (b) and (c) As the execution pro-

gresses, particles move from one cell to another, resulting in the

mismatch between access order and storage order.

1.1 Motivation

NERSC-8 GTC [39], a particle-in-cell code, is used for Gyrokinetic
Particle Simulation of Turbulent Transport in Burning Plasmas. A
previous study [36] on GTC shows that cache misses in different
invocation instances of the procedure that accesses an array of
particles in sequential order varies significantly and increases as
the execution progresses. With the source code analysis, we notice
that at the program start, all particles are stored in cell order, which
exactly matches access order, as shown in Figure 1a. However, as
the program continues, particles move from one cell to another,
resulting in the mismatch between access order and storage order
(loss of data locality), as shown in Figure 1b and 1c. Periodically
sorting particles in cell order can avoid the loss of data locality and
improve the program performance by more than 20%. However,
no existing sampling-based tools can identify procedure instance
execution variance since they cannot distinguish whether two sam-
ples from the same procedure belong to the same instance of that
procedure. As a result, they offer little help in optimizing this prob-
lematic procedure in GTC. Instrumentation-based tools can show
procedure instance execution variance by instrumenting function
call and return albeit the overheads are quite large. For example,
when we employ Intel Pin [35] to capture each procedure instance
in GTC by instrumenting call and return instructions, a 5× runtime
overhead is introduced and even worse an 8× runtime overhead
is introduced with call path collection enabled. Compile-time in-
strumentation can result in lower overhead but will not be able to
instrument the library code.

1.2 Contribution Summary

We make the following contributions:

• We develop a technique to overcome a critical missing piece in
sampling-based tools — synchronize samples with procedure
boundaries to monitor whole procedure instances.

• We develop a lightweight sampling-based variance profiler —
FVSampler — that combines PMUs and debug registers available
in commodity CPU processors to quantify variance across dif-
ferent invocations of the same function without requiring code
instrumentation.
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• We address the challenges raising due to combining the usage of
PMUs and the limited number of debug registers.

• We show that FVSampler monitors fully optimized, unmodified
binary executables and provides rich information to guide code
optimization, such as calling contexts, variance metrics and their
distributions, and source code attribution.

• We demonstrate the effectiveness of FVSampler by optimizing
several parallel applications under the guidance of FVSampler,
yielding significant speedups.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 reviews
the related work and distinguishes FVSampler. Section 3 offers the
background knowledge necessary to understand FVSampler. Sec-
tion 4 highlights the methodology we employ to capture function
entry and exit. Sections 5 and 6 depict the design and implemen-
tation of FVSampler. Section 7 evaluates FVSampler’s overhead
and shows several case studies. Section 8 presents our conclusions
and future work.

2 RELATEDWORK

Tracing Tools. HPCToolkit [1], perf [31], gprof [15], Cray-
PAT [11], and Intel VTune [9], Oracle Solaris Studio [42], Open-
SpeedShop [47], and PGPROF [54] use interrupt-based sampling
techniques supported by PMUs or OS timers to sample performance
events and present them in chronological order. Unlike FVSampler,
these tools do not capture function entry and exit and do not pin-
point function-level variance. Intel Pin [35], TAU [48], Scalasca [14],
DynamoRio [6], Valgrind [40], and Dyninst [41] show procedure
level execution variance via exhaustive or selective code instrumen-
tation. Compared to exhaustive instrumentation, FVSampler incurs
much lower overhead in both runtime and memory; compared to
selective instrumentation, which needs to know the interesting
functions for study, FVSampler does not require any prior knowl-
edge of the program.

Variance Diagnosis Tools. X-Ray [4] pinpoints performance
inefficiencies by employing dynamic binary instrumentation to
identify basic block level performance variance. Spectroscope [46]
diagnoses performance changes in distributed systems by compar-
ing request flows between two time periods (the period before the
change and the period after the change). Yoon et al. [60] combine
outlier detection and causality analysis to detect performance anom-
alies on individual transactions in online transaction processing
systems. VarianceFinder [45] identifies the performance variance
of requests under the same call path. Unlike these approaches,
FVSampler focuses on identifying function-level variance.

Szebenyi et al. [51] use instrumentation to intercept MPI routines
and use sampling to profile the remaining code during program
execution. Unlike it, FVSampler only uses sampling to profile func-
tion invocation instances and does not distinguish libraries from
the main executable. Any function called via a call instruction is a
potential candidate to be monitored.

VProfiler [19], an instrumentation-based tool, also identifies
function-level variance. However, users have to manually annotate
code regions of interest before applying VProfiler to the target
program. Moreover, VProfiler only identifies latency variance. In

contrast, FVSampler is able to identify variance of any PMU event,
such as CPU cycles and cache misses.

To the best of our knowledge, FVSampler is the first non-
intrusive sampling-based tool to study function-level variance of
HPC workloads.

Hardware Debug Register-assisted Tools. A few tools use
hardware debug registers to pinpoint performance inefficiencies
and correctness issues. None of them is able to quantify the execu-
tion variance. Erickson et al. [13] employ debug registers [22, 37]
to detect data races in the Windows kernel. Jiang et al. [21] ex-
tend it to the Linux kernel. They sample memory accesses and
set watchpoints at the sampled effective addresses to detect con-
flicting accesses. They use code breakpoints to intercept random
instructions and use them to monitor memory accesses for a time
window. Liu et al. develop DoubleTake [33] and CSOD [32], which
use debug registers to identify memory-related vulnerabilities, such
as buffer overflows, use after free, and memory leaks. Pesterev et
al. develop DProf [43], which combines PMU and debug registers
to construct the data flow across runtime objects. DProf suffers
from the limited number of debug registers; it needs to run a pro-
gram multiple times to achieve higher coverage. Wen et al. [57]
combine PMUs and debug registers to identify wasteful memory
operations in native languages. Su et al. [50] employ the similar
techniques to identify wasteful memory operations in managed
languages. Chabbi et al. [7] apply PMUs and debug registers to
identify false sharing in multi-thread or multi-process executions.
Wang et al. [55] apply PMUs and debug registers to measure reuse
distances to quantify whole-program data locality.

Orthogonal to these tools, FVSampler addresses a different prob-
lem with a different usage of debug registers.

Software-based Return Address Interpretation. Kasikci et
al. [24] trace cold code by dynamically rewriting the first instruc-
tion of every basic block with the int 3 breakpoint instruction,
which causes a trap. This approach can be used to rewrite all the
return instructions to capture function exits. However, such binary
rewriting does not offer per-thread breakpoints. Maintaining local
breakpoints with code caches can incur high overhead. Arnold and
Sweeney [3] perform call stack unwinding by replacing the func-
tion return address with a trampoline (the address of a handcrafted
code snippet). When the modified function returns, the control is
first transferred to the trampoline and then transferred back to
the program. This software approach is also able to intercept the
return from the same function invocation. Unlike these approaches,
FVSampler uses hardware debug registers to intercept the return
from the same function invocation and targets a completely differ-
ent problem — variance profiling.

3 BACKGROUND

Hardware Performance Monitoring Unit (PMU). Modern
CPUs expose programmable registers (aka PMU) that count various
hardware events such as retired instructions, CPU cycles, and cache
misses, to name a few. These registers can be configured in sam-
pling mode: when a threshold number of hardware events elapse,
PMUs trigger an overflow interrupt. A profiler is able to capture the
interrupt as a signal, known as a sample, and attribute the metrics
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collected along with the sample to the execution context. These reg-
isters can also be configured in counting mode: users can read the
number of occurrences of hardware events from PMUs at any time
during program execution. PMUs are per CPU core and virtualized
by the OS for each thread.

Intel offers Precise Event-Based Sampling (PEBS) [8] in Sandy-
Bridge and following generations. PEBS can capture the precise
instruction pointer (IP) for the instruction resulting in event counter
overflow. AMD Instruction-Based Sampling (IBS) [12] and PowerPC
Marked Events (MRK) [49] offer similar capabilities.

Hardware Debug Register. Hardware debug registers [22, 37]
enable trapping the CPU execution for debugging when the pro-
gram counter (PC) reaches an address (breakpoint) or an instruction
accesses a designated address (watchpoint). One can program debug
registers to trap on various conditions: accessing addresses, access-
ing widths, and accessing types (write-only and read-or-write). The
number of debug registers is limited; an x86 processor has four
debug registers and a PowerPC processor has one debug register.

Linux perf_events. Linux offers a standard interface to pro-
gram and sample PMUs and monitor debug registers via the
perf_event_open system call [30] as well as the associated ioctl
system calls. The Linux kernel can deliver a signal to the specific
thread whose PMU event counter overflows or debug register traps.
A PMU sample is a CPU interrupt caused when an event counter
overflows. A watchpoint exception (aka trigger) is a synchronous
CPU trap caused when a monitored address is accessed. Both PMU
samples and watchpoint exceptions are handled via Linux signals.
The user code can extract PMU data and execution contexts at the
signal handler.

4 METHODOLOGY

The PMU provides precise events to sample call and return instruc-
tions, however, that is not sufficient — PMU samples cannot be
configured to deliver one sample at the function entry and another
at the return from the same function instance. Our solution is to use
PMUs to sample only the call instructions and use debug registers
to intercept the returns from the function matching the sampled
call instructions.

The point where the PMU delivers an interrupt is at the func-
tion entry, that is, right after the call instruction execution in the
caller. At this point, the stack pointer (register rsp in x86) points
to the top of the stack (M[rsp]), which holds the return address for
the caller to continue (Figure 2a). The callee accesses this return
address stored on the stack just when it is about to return. We can
intercept the return from the callee by protecting the access to this
memory location (M[rsp]). We use debug registers to protect the
subsequent access to M[rsp]. When the callee fetches the return
address fromM[rsp], it triggers a read-or-write watchpoint trap,
as shown in Figure 2b. Furthermore, the signal handlers invoked
during these two points (PMU sample at a call and watchpoint trap
at the return) allow us to record the metrics of interest and the
difference in metrics between these two points can be attributed to
the function invocation instance. In summary, we can now synchro-
nize sampling with start and end points of functions and since we
rely on PMU samples, we have not introduced any source or binary

Stack grow
th

…

Parameters

Return addressrsp

funA()

funB()

Read

(a) Function call (b) Function return

Return instruction

…

Parameters

Return address

funA()

funB()
Watchpoint

Watchpoint
exception

Figure 2: Actions on function call and return. (a) The call instruction

in funA() (the caller) pushes the parameters of funB() (the callee)

and the return address on the stack; After the call instruction exe-

cution, the return address is on the top of the stack. We set a watch-

point at the stack location (marked in blue) that holds the return ad-

dress. (b) The return instruction in funB() fetches the return address

from the stack, which triggers a read-or-write watchpoint trap.

instrumentation; statistically significant functions (i.e., functions
with a high invocation frequency) appear in our samples with a
high probability.

Before arriving at the final design, we explored two other strate-
gies in capturing function exits. These two approaches used debug
registers as breakpoints (trapping on instruction execution) instead
of watchpoints (trapping on memory access). In the first approch,
we used debug registers to directly monitor return instructions, e.g.,
retq in the body of the callee; the return instructions were obtained
via an on-the-fly binary analysis. However, it is common that a
function has many return instructions but this approach could only
monitor four return instructions in a function body with the four
available debug registers. This approach would fail to capture the
exit from a function if the unmonitored return instruction is exe-
cuted. In the second approach, we used debug registers to monitor
the return address — the address of the instruction in the caller that
is executed right after the callee returns. This approach, however,
failed for recursive functions because different invocation instances
of a recursively called function all share the same return address.
Consequently, we arrived at the final, correct approach of moni-
toring the stack location holding the return address of a function
invocation.

5 DESIGN AND IMPLEMENTATION

Figure 3 shows the implementation details of how FVSampler uses
PMUs to sample function call and uses debug registers to inter-
cept the return from the same function instance. 1○ FVSampler
subscribes to the precise PMU call event in sampling mode and
configures debug registers as watchpoints for each thread via the
perf_event interface. FVSampler also configures other PMUs in
counting mode to monitor user-specified events (e.g., CPU cy-
cles, cache misses) as for the variance metrics. 2○When the PMU
counter overflows on sampling function calls, it triggers an inter-
rupt. FVSampler handles the interrupt signal, constructs the calling
context at the interrupt via unwinding the execution call stack, and
reads the user-specified PMU counters to obtain their current values
(Vcall ). 3○ FVSampler obtains the stack addressM[rsp] recorded
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Figure 3: FVSampler’s actions in steps to collect variance metrics.

FVSampler works on unmodified binary executables and off-the-

shelf Linux kernel in commodity CPU architectures.

in register rsp, sets a read-or-write watchpoint 3 at M[rsp], and
resumes the program execution. 4○ When the return instruction
reads the return address fromM[rsp] 4, it triggers awatchpoint trap.
FVSampler handles the trap signal and reads the user-specified
PMU counters to obtain their current values (Vr et ). 5○ FVSampler
records the difference betweenVr et andVcall , which is the count of
the performance events occurring in the current function instance.
FVSampler disarms the watchpoint and resumes the program exe-
cution until the next PMU overflow. When the signal handler code
is executing, we stop all PMU counters so that FVSampler’s over-
head is not counted towards the metrics collected for the function
under investigation.

This scheme assumes flat function calls — we capture each func-
tion instance’s call and return before monitoring the next one. We
need to handle the code with deep call chains.

5.1 Addressing Deep Call Chains

Hardware offers only a small number of debug registers, which
becomes a limitation if the PMU delivers a new sample before
none of the previously set watchpoints traps. To better illustrate
the problem, consider a call chain consisting of three functions:
main()→funA()→funB(). Assume the PMU is able to sample both
funA() and funB(), and there is only one debug register available.
The first sample occurs when funA() is being called by main(),
which results in setting a watchpoint at the stack address holding
the return address of funA(). The second sample occurs when
funA() is calling funB(). However, there is no room to monitor
the stack address holding the return address of funB() since the
previously set watchpoint is still active. With this strategy, in a
system with N debug registers, at most N function instances can
be monitored simultaneously.

FVSampler addresses this problem based on an observation:
callees always return before their callers return 5. Thus, FVSampler
maintains a stack S to save active stack addresses being monitored

3x86 debug registers do not offer the trap-only-on-read facility.
4In a function’s execution, only return instructions read the return address from
M [rsp] and no instructions write values toM [rsp]. We do not consider buffer over-
flows in the security domain.
5longjmp() is an exception, which is discussed in Section 5.4.

by watchpoints. We use the same call chain as an example to illus-
trate our idea, as shown in Figure 4. Upon the sample that captures
the call instruction to funA(), FVSampler sets a watchpoint at the
stack address holding the return address of funA() since a debug
register is available, as shown in Figure 4a. Upon the next sample
that captures the call instruction to funB(), FVSampler disarms
the watchpoint, pushes the address that the watchpoint is mon-
itoring for funA() on S, and reconfigures the debug register to
monitor the stack address holding the return address of funB(), as
shown in Figure 4b. When funB() returns later in the execution, it
triggers a watchpoint trap. FVSampler handles the trap as normal
for variance metrics, disarms the watchpoint, pops out the stack
address holding the return address of funA() from S, and recon-
figures the watchpoint to monitor the stack address holding the
return address of funA(), as shown in Figure 4c.

With this scheme, only one debug register is needed to handle
the deep call chain, which makes our technique widely applicable
to both x86 and PowerPC architectures.

5.2 Associating with Calling Contexts

Simply attributing a sample to the corresponding function
does not provide insights needed for developer actions. For
example, attributing a sample to a common glibc function
such as malloc(), offers little insight since it can be in-
voked from many places in a complex application. A de-
tailed attribution demands providing the full calling context:
main():line#→funA():line#→...→malloc():line#. Thus,
FVSampler obtains the calling context where a function call oc-
curs. Since the interrupt happens immediately after the function
call, the calling context of the interrupt is at the function entry.
At the function return, FVSampler need not determine the calling
context as it is the same as the one obtained at the function call.
FVSampler constructs calling contexts with an on-the-fly binary
analysis technique [53], which efficiently maintains calling contexts
as a compact calling context tree [2] by merging common prefixes.

5.3 Obtaining Variance Metrics

FVSampler provides two options to present variance metrics. One
is to plot the metrics collected from all the sampled instances for
a given function in a given calling context. This plot provides the
most straightforward view of variance and is able to expose vari-
ance patterns (e.g., the increase of cache misses in GTC described
in Section 1.1) for optimization actions. The other is to provide a
compact view, which computes the mean, standard deviation, and
coefficient of variation across the metrics collected from the sam-
pled instances for any function in any calling context. Such compact
view can help users quickly locate the problematic functions for
further investigation. To avoid recording metrics of every sampled
function instance, we leverage Welford’s online algorithm [58]. In
this section, we briefly describe this algorithm; details about the
rigorous proofs can be found in the related paper [56].

When the ith sample of a function occurs, the mean (V {1, ...,i }),
standard deviation (SDV{1, . . .,i } ), and coefficient of variation
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Figure 4: Using one debug register to monitor all sampled function instances. FVSampler maintains a stack S to save active stack addresses

being monitored by watchpoints. (a) When main() is calling funA(), FVSampler sets a watchpoint at the stack address holding the return

address of funA(). (b) When funA() is calling funB(), FVSampler pushes the address the watchpoint is monitoring for funA() on S, disarms

the watchpoint, and sets it at the stack address holding the return address of funB(). (c) When funB() is returning to funA(), FVSampler pops

out the address holding the return address of funA() from S and resets the watchpoint at it.

(CVV{1, . . .,i } ) of the variance metric (V{1, ...,i }) across the first i sam-
ples are calculated by the following equations:

V {1, . . .,i } =
(i − 1)V {1, . . .,i−1} +Vi

i

SDV{1, . . .,i } =

√√
(Vi −V {1, . . .,i−1})(Vi −V {1, . . .,i }) + (i − 2)SD2

V{1, . . .,i−1}

i − 1

CVV{1, . . .,i } =
SDV{1, . . .,i }
V {1, . . .,i }

From these equations, we can see that computation on these metrics
enjoys an incremental fashion, with no need to record all samples. In
this paper, we employ the coefficient of variation metric to quantify
procedure instance execution variance.

5.4 Discussions

Handling Parallelism. FVSamplerworks forMPI programs as
it monitors eachMPI process independently. FVSampler also works
for multithreaded programs since PMUs and debug registers are
virtualized by the OS for each thread. FVSampler does not handle
the user-level threading where a function call and its corresponding
return are executed on two different OS threads. A solution to user-
level threading would require minimal support from the runtime —
the user-level thread switching should save and restore the debug
register state.

Handling longjmp(). setjmp()/longjmp() provide inter-
procedure jumps, which deviates from the typical calling conven-
tions. FVSampler intercepts them by overloading their calls. When
longjmp() executes, FVSampler disarms the active watchpoint.
FVSampler also clears the watchpoint stack S because we do not
know which stack frame longjmp() jumps to.

Understanding the limitation of sampling. Like any
sampling-based tool, FVSampler captures statistically significant
functions (i.e., functions with high invocation frequency) and
misses some insignificant ones. It satisfies the needs for studying
variance because variance is meaningful only on functions with
high invocation frequency. Seldom called functions (e.g., main())
are less interesting. FVSampler will miss some functions that are
not invoked via a call instruction, e.g., functions that are inlined or
called via a tail call.

6 USAGE OF FVSAMPLER

6.1 FVSampler’s Workflow

FVSampler consists of three components: a runtime profiler, a
post-mortem analyzer, and a GUI. The runtime profiler accepts
fully optimized binary executables and collects profiles, which has
been described in Section 5. The post-mortem analyzer and GUI
analyze the runtime profiles and associate them with the program
source code for intuitive guidance. The rest of this section focuses
our discussion on the post-mortem analyzer and GUI.

Post-mortem Analyzer. As the runtime profiler produces per-
thread profiles, the analyzer needs to coalesce the profiles for the
entire execution. The coalescing procedure follows the rule: two
invocation instances of the same function from different threads
are merged iff they have the same calling context. All the metrics
are also merged across threads. The scheme is similar for profiles
from different processes. The calling context profiles can scale the
analysis of program execution to a large number of cores. The
coalescing overhead grows linearly with the number of threads and
processes run in the monitored program. FVSampler leverages the
reduction tree technique [52] to parallelize the merging process.
FVSampler takes less than one minute to merge per-thread profiles
in all of our studied programs.

GUI. The GUI is built atop an existing graphical interface,
hpcviewer [38], which enables navigating calling contexts and
the corresponding source code ordered by the monitored metrics in
a top-down and bottom-up manner. Additionally, the GUI provides
an option to plot the execution variance of any sampled function in
the timeline. Figure 5 in Section 7.1 shows an example of the GUI
and we defer the explanation of the GUI details to that section.

6.2 FVSampler’s Optimization Guidance

Our optimization decision on a function is based on the execu-
tion time and variance (i.e., coefficient of variation metrics), as
shown in Table 1. Only functions with both high execution time
and variance are worth efforts for further performance analysis. In
all of our case studies, we investigate a function iff it accounts for
more than 10% CPU cycles over the entire program and has larger
than 20% intra-thread variance or 10% inter-thread variance. Once
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Table 1: Optimization decisions based on the execution time and

variance. We would like to focus our optimization efforts on func-

tions with both high execution time and variance.

Execution time Variance Guidance

High High Actions should be taken to
reduce variance for performance

High Low Performance is unrelated to variance

Low High Reducing variance yields little
benefit to the whole program

Low Low No action on variance optimization

FVSampler pinpoints a problematic function, it plots the metrics
collected from all its sampled instances in the timeline. The vari-
ance pattern can effectively guide unique code optimization (e.g.,
Section 7.1).

7 EVALUATION

We evaluate FVSampler on a machine with two 18-core Intel
Xeon E5-2699 v3 CPUs (Haswell) of 2.30GHz frequency run-
ning Linux 4.8.0. The machine has a private 32KB L1 cache, a
private 256KB L2 cache, a shared 40MB L3 cache, and 128GB
main memory. FVSampler subscribes to the precise PMU event
BR_INST_RETIRED.NEAR_CALL to sample call instructions.

Overhead. Runtime overhead is measured as the ratio of the
runtime of a program monitored with FVSampler to the run-
time of its native execution. Table 2 shows the runtime overhead
of FVSampler on two HPC benchmark suites — NERSC-8 [39]
and CORAL-2 [28] as well as five HPC benchmarks — LULESH-
2 [23], Sweep3D [26], MASNUM [44], Sequoia AMG2006 [27], and
PARSEC-2.1 dedup [5]. Programs are compiled with gcc-5.4.1
-O3 except MASNUM compiled with icc-18.0.2 -O3. MPI pro-
grams are compiled with MPICH-3.0.4 [25]. All MPI programs are
run with 36 processes and all OpenMP programs are run with 36
threads, which are pinned to cores. We tune the sampling period to
ensure that at least 30 samples are collected per second per thread.
We use the PMU event PERF_COUNT_HW_INSTRUCTIONS in count-
ing mode to count the number of instructions executed by each
sampled function instance. We run each program five times and
report the average runtime overhead. In Table 2, we can see that
FVSampler typically incurs 6% runtime overhead. FVSampler can
incur more overhead when profiling short-running programs (e.g.,
< 1 second) due to the fixed overhead of setting up PMUs and debug
registers. Table 3 shows per-sample overhead and per-watchpoint-
trap overhead, respectively. We can see that FVSampler typically
incurs 44 microseconds overhead per sample and 11 microseconds
overhead per watchpoint trap. In addition, FVSampler incurs aver-
age 7MB memory overhead per thread in all these programs. Such
low overhead makes FVSampler appropriate for production runs.

Case Studies. Table 4 summarizes the performance issues found
by FVSampler via function-level execution variance analysis. All
programs are compiled with gcc-5.4.1 -O3 and run with 36
threads on a single node except MASNUM that is compiled with
icc-18.0.2 -O3 and run with 36 MPI processes on a cluster. We
quantify the performance improvement in execution time of the

Table 2: FVSampler’s runtime overhead in the unit of times (×).

Some benchmarks are not covered due to compile-time or runtime

errors.

AMG C MPI+OpenMP 42.14 1.07x

GTC Fortran MPI+OpenMP 50.29 1.04x

MILC C MPI+OpenMP 81.63 1.05x

MiniFE C++ MPI+OpenMP 53.17 1.08x

PSNAP C MPI 49.66 1.05x

SMB C MPI 113.43 1x

SNAP Fortran MPI+OpenMP 43.91 1.06x

STREAM C/Fortran MPI+OpenMP 35.33 1.06x

CLOMP C MPI+OpenMP 21.21 1.06x

MDTest C MPI 55.49 1.04x

PENNANT C++ MPI+OpenMP 24.76 1.09x

Quicksilver C++ MPI+OpenMP 27.61 1.08x

C++ MPI+OpenMP 36.59 1.08x

Fortran MPI 34.78 1.06x

Fortran MPI 67.12 1.12x

C MPI+OpenMP 44.13 1.05x

C Pthreads 20.42 1.11x

– – – 1.06x
– – – 1.06x

Median
GeoMean

LULESH-2

PARSEC-2.1dedup
N
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R

S
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Benchmark Language
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MASNUM

Sequoia AMG2006

Overhead
Native runtime 

(sec)

C
O

R
A

L-
2

Programming

 model

Table 3: FVSampler’s per-sample overhead and per-watchpoint-

trap overhead in the unit of microseconds.

Per sample Per watchpoint trap
AMG 24 8
GTC 50 9
MILC 44 11

MiniFE 16 7
PSNAP 13 7
SMB 54 9
SNAP 52 14

STREAM 43 12
CLOMP 154 27
MDTest 71 12

PENNANT 60 13
Quicksilver 26 9

59 11
102 11
13 8
24 13
14 8
44 11
45 11

Sequoia AMG2006

GeoMean

Overhead (microsecond)Benchmark
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Median
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entire program. In the rest of this section, we describe the insights
FVSampler offers to users and the optimizations on the problematic
functions for each program shown in Table 4.
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Table 4: Overview of performance improvement guided by FVSampler.

Program Inefficiency Optimization
Call site of the problematic function Symptom Solution Speedup

MASNUM [44] propagat.inc(96, 103) Linear search Locality-friendly search 1.54×
Sequoia AMG2006 [27] par_relax.c(1654, 1658) Load imbalance Reducing the granularity of parallel work 1.08×
NERSC-8 MiniFE [39] SparseMatrix_functions.hpp(465, 474) Poor data structure Replacing C++ set with unordered_set 1.96×
PARSEC-2.1 dedup [5] encoder.c(120, 226, 840, 891, 1003) Poor hashing algorithm Reducing hash collisions 1.08×

Caller

Calling context

# of invocations# of CPU cycles

Callee

Figure 5: FVSampler’s report for MASNUM, showing a problematic

function — search() with full calling context.

7.1 MASNUM

MASNUM [44], one of the 2016 ACM Gordon Bell Prize finalists,
forecasts ocean surface waves and climate change. It is written in
Fortran and parallelized with MPI. We deploy FVSampler to the
Stampede2 cluster located at Texas Advanced Computing Center
(TACC). Stampede2 consists of 4,200 Intel Xeon Phi 7250 (Knights
Landing) nodes and 1,736 Intel Xeon Platinum 8160 (SkyLake) nodes.
We use only the SkyLake nodes to run MASNUM. Each SkyLake
node consists of two 24-core sockets at 2.10GHz clock rate and 192
GB DDR4 main memory. Given the default input size of MASNUM,
we run MASNUM with six nodes and totally 36 MPI processes.
FVSampler reports that function search() is invoked in two call
sites, which accounts for 27% of the total CPU cycles. The variance
of the number of instructions executed in search() is high — 31%.
One of the call sites with its full calling context as seen through
FVSampler’s GUI is highlighted in Figure 5. The GUI consists of
three panes: the top pane shows the program source code, the
bottom left pane shows the calling contexts, and the bottom right
pane shows the metrics.

Figure 6a shows the number of instructions executed in different
invocation instances of search() under the same calling context in
one MPI process. The other 35 processes have similar patterns (not
shown). In this figure, we make two observations. (1) The number
of instructions executed in different invocations of search() has

a clear periodical distribution pattern. (2) In each interval period,
the number of instructions gradually increases and the number
of instructions executed in adjacent invocations is similar, which
indicates adjacent invocations of search() have similar workloads.

To understand the root cause of such execution pattern, we
investigate the implementation of search(), as shown in the top
pane in Figure 5. We find that search() is invoked in a loop and
in each invocation, it performs a linear search (lines 8-12 in the file
search.inc) for a given input xx over an immutable non-decreasing
array x to determine the location of xx. With further investigation,
we notice that the input xx has good value locality, that is, the
parameter values are similar in adjacent invocations of search().
Consequently, in array x, the number of elements that are required
to compare with xx in adjacent invocations are similar, which shows
up as tiny horizontal bars (meaning approximately the same number
of instructions in adjacent invocations) in Figure 6a.

To improve serach(), we replace the linear search with a locality-
friendly search. We memoize the location index of input xx when
the current search instance finishes; in the next search, we begin
at the previously recorded location index and alternate the linear
search in both directions to the start and end of array x. This opti-
mization yields a 1.54× speedup for the entire program and reduces
the variance of the number of instructions executed in search()
to 2%, as shown in Figure 6b, which is much flatter than the one
shown in Figure 6a.

It is worth noting that changing the linear search to a binary
search yields less than 2% performance improvement. Because the
binary search, although reduces the number of instructions exe-
cuted, hurts the data locality.

7.2 Sequoia AMG2006

Sequoia AMG2006 [27] is a parallel algebraic multigrid solver for
linear systems arising from problems on unstructured grids. We
study an optimized version from Liu and Mellor-Crummey [34].
The code is written in C and parallelized with MPI+OpenMP. We
run AMG2006 on a 30 × 30 × 30 grid.

FVSampler reports that function hypre_BoomerAMGTraverse()
consumes 10% of the total CPU cycles and 36% of the total
function invocations, as shown in Figure 7. FVSampler fur-
ther identifies that the number of instructions executed in
hypre_BoomerAMGTraverse() varies significantly on different
threads, as shown in Figure 8. With the source code study, we
find that hypre_BoomerAMGTraverse() is invoked in a loop nest
and the outer loop is a statically scheduled OpenMP loop, which
divides the iterations into equal-sized chunks and assigns them to
each thread. It appears that each thread has an equal amount of
work because each chunk consists of an equal number of iterations.
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(a) Original. (b) Optimized.

Figure 6: Variance of the number of instructions executed in different invocation instances of search() inMASNUM. In the originalMASNUM,

search() performs a linear search over an immutable non-decreasing array and in the optimized MASNUM, we performs locality-friendly

search over that array. We can clearly see that the variance shown in Figure (a) is much higher than the one shown in Figure (b).

Callee Caller

# of CPU cycles # of invocations

Figure 7: Inter-thread variance in SequoiaAMG2006. The number of

instructions executed in hypre_BoomerAMGTraverse() varies signifi-

cantly on different threads. hypre_BoomerAMGTraverse() takes dif-

ferent branches, which results in execution variance.

When investigating the function body, we find
hypre_BoomerAMGTraverse() employs branches, which re-
sults in execution variance depending on the taken branch. This
execution variance among threads is a symptom of load imbalance.
The most straightforward optimization is to redistribute the
iterations to different threads. However, as Figure 9 shows, the
execution variance of hypre_BoomerAMGTraverse() inside each
thread is also high. Thus, it is difficult to assess the workload of
each iteration and achieve load balance via static scheduling.

To solve the load imbalance, we reduce the chunk size to 1
5 of

the original chunk size and employ dynamic scheduling to balance
the work across threads. With this optimization, the variance of the
work (number of instructions) assigned to each thread is reduced
from 14% to 3%. FVSampler also identifies other functions with the
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similar issue and guides the similar optimization. Finally, the entire
program gains a 1.08× speedup.
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1 void impose_dirichlet (..., const std::set <typename MatrixType ::
GlobalOrdinalType >& bc_rows) {

2 ...
3 for(size_t i=0; i<A.rows.size(); ++i) {
4 ...
5 A.get_row_pointers(row , row_length , cols , coefs);
6 Scalar sum = 0;
7 for(size_t j=0; j<row_length; ++j) {
8 ▶ if (bc_rows.find(cols[j]) != bc_rows.end()) {
9 sum += coefs[j];
10 coefs[j] = 0;
11 }
12 }
13 }
14 }

Listing 1: Call site of std::set::find() in NERSC-8 MiniFE, which

accounts for 22% of the total CPU cycles.

Figure 10: Variance of the number of instructions executed in

different invocation instances of std::set::find() in NERSC-8

MiniFE. std::set in C++ is implemented as a Red-Black tree where

a lookup operation requires one comparison in the best case and

O(logn) comparisons in the worst case. Consequently, the num-

ber of instructions executed in different invocation instances of

std::set::find() varies from one to O(logn).

7.3 NERSC-8 MiniFE

NERSC-8 MiniFE [39] employs the implicit finite-element method
(FEM) to solve problems of engineering and mathematical physics.
The code is written in C++ and parallelized with MPI+OpenMP.
We apply FVSampler to evaluate it with the default input. List-
ing 1 highlights one of the hottest function — std::set::find()
at line 8, which accounts for 22% of the total CPU cycles and is
executed only on the master thread. FVSampler further reports the
number of instructions executed in different invocation instances
of std::set::find(), as shown in Figure 10. We can see that
the work (number of instructions) performed by different instances
varies significantly. The underlying implementation of std::set in
C++ is a Red-Black tree where a lookup operation requires one com-
parison in the best case and O(logn) comparisons in the worst case.
Hence, the number of comparisons involved in std::set::find()
varies from one to O(logn), which shows up as the large execution
variance.

To improve the lookup operation, we replace std::set with
std::unordered_set. The latter uses a hash table to store ele-
ments, which requires expected O(1) comparisons to look up an

1 struct hash_entry *hashtable_search(struct hashtable *h, void *k){
2 struct hash_entry *e;
3 unsigned int hashvalue , index;
4 hashvalue = hash(h,k);
5 index = indexFor(h->tablelength ,hashvalue);
6 e = h->table[index];
7 ▶ while (NULL != e) {
8 ▶ if (( hashvalue == e->h) && (h->eqfn(k, e->k))) return e;
9 ▶ e = e->next;
10 ▶ }
11 ...
12 }

Listing 2: Inefficient implementation of hashtable_search() in

PARSEC-2.1 dedup. Excessive hash collisions in linear hashing re-

sult in non-uniform linked lists.

element. With this optimization, the execution variance reduces
significantly, yielding a 1.96× speedup for the entire program.

7.4 PARSEC-2.1 dedup

PARSEC-2.1 dedup [5] compresses data via deduplication. It is
written in C and parallelized with Pthreads. With the native in-
put, FVSampler reports that function hashtable_search() ac-
counts for 11% of the total CPU cycles. Figure 11a shows the
variance of L1D cache misses in different invocation instances
of hashtable_search(). Listing 2 shows the implementation of
hashtable_search(), which is invoked in a loop (not shown). In
each invocation, hashtable_search() searches for an item in a
linked list associated with a hash table entry. With further inves-
tigation, we notice that only ∼2% of hash buckets are occupied,
resulting in excessive collisions. Given different search items, the
length of linked list traversal can be different, resulting in execution
variance (measured in cache misses).

To optimize, one can improve the hash algorithm by uniformly
distributing hash keys across all buckets to reduce the variance in
traversing the linked list due to hash collisions. In this case study,
we adopt Curtsinger and Berger’s approach [10] to balance the hash
key distribution, which reduces the variance of L1D cache misses
in hashtable_search() from 56% to 16%, as shown in Figure 11b.
The whole program gains a 1.08× speedup.

8 CONCLUSIONS AND FUTUREWORK

This paper presents FVSampler, a lightweight variance profiler
for HPC applications. FVSampler advances the state-of-the-art
in sampling profilers by demonstrating the ability to synchro-
nize profiling samples precisely at procedure boundaries. Thus,
FVSampler abandons code instrumentation for function-level mon-
itoring. FVSampler adopts hardware performancemonitoring units
to sample function call and uses hardware debug registers to in-
tercept the return from the same function invocation instance.
FVSampler further collects the performance events, e.g., CPU cy-
cles, instruction instances, cache misses, occurring in each sampled
function instance and computes the variance metrics across differ-
ent instances of the same function. FVSampler is able to pinpoint
both intra-thread and inter-thread variance, which helps isolate
performance problems in complex codes. FVSampler incurs low
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(a) Original. (b) Optimized.

Figure 11: Variance of L1D cache misses in different invocation instances of hashtable_search() in PARSEC-2.1 dedup. hashtable_search()
searches for an item in a linked list associated with a hash table entry. In the original dedup, only ∼2% of hash buckets are occupied, resulting

in excessive collisions. Given different search items, the length of linked list traversal can be significantly different, resulting in execution

variance. In the optimized dedup, hash keys are uniformly distributed across buckets to reduce the variance in traversing the linked list.

runtime and memory overheads, which makes it attractive for pro-
duction HPC codes. Guided by FVSampler, we are able to optimize
several parallel applications, yielding up to a 1.96× speedup.

Our future direction is to explore execution variance beyond the
procedure level. We will investigate a finer granularity of a series of
basic blocks and also a coarser granularity of a series of procedures
for a semantic interval.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We evaluate FVSampler on a machine with two 18-core Intel Xeon
E5-2699 v3 CPUs (Haswell) of 2.30GHz frequency running Linux
4.8.0. The machine has a private 32KB L1 cache, a private 256KB L2
cache, a shared 40MB L3 cache, and 128GB main memory. FVSam-
pler is built with gcc-5.4.1 -O3.

The benchmarks include two HPC benchmark suites — NERSC-8
and CORAL-2 as well as several HPC benchmarks — LULESH-2,
Sweep3D, MASNUM, Sequoia AMG2006, and PARSEC-2.1 dedup.
Programs are compiled with gcc-5.4.1 -O3 except MASNUM that
is compiled with icc-18.0.2 -O3. MPI programs are compiled with
MPICH-3.0.4. All MPI programs are run with 36 processes and all
OpenMP programs are run with 36 threads, which are pinned to
cores.

In addition, We also deploy FVSampler to the Stampede2 cluster
located at Texas Advanced Computing Center (TACC). Stampede2
consists of 4,200 Intel Xeon Phi 7250 (Knights Landing) nodes and
1,736 Intel Xeon Platinum 8160 (SkyLake) nodes. We use only the
SkyLake nodes to run MASNUM. Each SkyLake node consists of
two 24-core sockets at 2.10GHz clock rate and 192 GB DDR4 main
memory.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:
https://github.com/WitchTools/FVSampler

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel Xeon E5-2699 v3 CPUs (Haswell)
@ 2.30GHz, Intel Xeon Platinum 8160 (SkyLake) @ 2.10GHz

Operating systems and versions: Ubuntu 14.04 running Linux
kernel 4.8.0

Compilers and versions: gcc-5.4.1, icc-18.0.2

Applications and versions: NERSC-8, CORAL-2, LULESH-2,
Sweep3D, MASNUM, Sequoia AMG2006, PARSEC-2.1 dedup

Libraries and versions: MPICH-3.0.4

Paper Modifications: We propose FVSampler, a lightweight,
sampling-based variance profiler. FvSampler is able to quantify
variance across different invocations of the same function without

requiring code instrumentation. Guided by FvSampler, we are able
to optimize several parallel applications by mitigating the causes
of variance, yielding up to a 1.96× speedup.

Output from scripts that gathers execution environment informa-
tion.
Distributor ID: Ubuntu
Description: Ubuntu 14.04.5 LTS
Release: 14.04
Codename: trusty
+ uname -a
Linux ksunserver3 4.8.0 #1 SMP Tue Jul 24 00:36:17 EDT

2018 x86_64 x86_64 x86_64 GNU/Linux↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 72
On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 63
Stepping: 2
CPU MHz: 1201.379
BogoMIPS: 4590.66
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K
NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71
+ cat /proc/meminfo
MemTotal: 131626784 kB
MemFree: 100988292 kB
MemAvailable: 129709472 kB
Buffers: 2453660 kB
Cached: 25138376 kB
SwapCached: 11972 kB
Active: 15095556 kB
Inactive: 12675996 kB
Active(anon): 176440 kB
Inactive(anon): 15596 kB
Active(file): 14919116 kB
Inactive(file): 12660400 kB
Unevictable: 32 kB
Mlocked: 32 kB
SwapTotal: 133944316 kB
SwapFree: 133596456 kB
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Dirty: 20 kB
Writeback: 0 kB
AnonPages: 169156 kB
Mapped: 67236 kB
Shmem: 12268 kB
Slab: 2429240 kB
SReclaimable: 2203460 kB
SUnreclaim: 225780 kB
KernelStack: 20848 kB
PageTables: 31468 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 199757708 kB
Committed_AS: 3747948 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 135168 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 301508 kB
DirectMap2M: 5718016 kB
DirectMap1G: 130023424 kB
+ inxi -F -c0
collect_environment.sh: line 14: inxi: command not

found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
ram11 1:11 0 64M 0 disk
ram2 1:2 0 64M 0 disk
loop1 7:1 0 0 loop
ram0 1:0 0 64M 0 disk
ram9 1:9 0 64M 0 disk
ram7 1:7 0 64M 0 disk
loop6 7:6 0 0 loop
ram14 1:14 0 64M 0 disk
ram5 1:5 0 64M 0 disk
loop4 7:4 0 0 loop
ram12 1:12 0 64M 0 disk
ram3 1:3 0 64M 0 disk
loop2 7:2 0 0 loop
ram10 1:10 0 64M 0 disk
ram1 1:1 0 64M 0 disk
loop0 7:0 0 0 loop
sda 8:0 0 743.2G 0 disk

sda2 8:2 0 1K 0 part

sda5 8:5 0 127.8G 0 part [SWAP]

sda1 8:1 0 615.5G 0 part /
ram8 1:8 0 64M 0 disk
loop7 7:7 0 0 loop
ram15 1:15 0 64M 0 disk
ram6 1:6 0 64M 0 disk
loop5 7:5 0 0 loop
ram13 1:13 0 64M 0 disk
ram4 1:4 0 64M 0 disk
loop3 7:3 0 0 loop
+ lsscsi -s
collect_environment.sh: line 16: lsscsi: command not

found↪→

+ module list
collect_environment.sh: line 17: module: command not

found↪→

+ nvidia-smi
collect_environment.sh: line 18: nvidia-smi: command

not found↪→

+ lshw -short -quiet -sanitize
+ cat
H/W path Device Class

Description↪→

==================================================== ⌋

=========↪→

system
UCSC-C220-M4S
()

↪→

↪→

/0 bus

UCSC-C220-M4S↪→

/0/0 memory 64KiB

BIOS↪→

/0/22 memory

128GiB System Memory↪→

/0/22/0 memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/1 memory DIMM

[empty]↪→

/0/22/2 memory DIMM

[empty]↪→

/0/22/3 memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/4 memory DIMM

[empty]↪→

/0/22/5 memory DIMM

[empty]↪→

/0/22/6 memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/7 memory DIMM

[empty]↪→

/0/22/8 memory DIMM

[empty]↪→

/0/22/9 memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/a memory DIMM

[empty]↪→
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/0/22/b memory DIMM

[empty]↪→

/0/22/c memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/d memory DIMM

[empty]↪→

/0/22/e memory DIMM

[empty]↪→

/0/22/f memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/10 memory DIMM

[empty]↪→

/0/22/11 memory DIMM

[empty]↪→

/0/22/12 memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/13 memory DIMM

[empty]↪→

/0/22/14 memory DIMM

[empty]↪→

/0/22/15 memory 16GiB

DIMM 2133 MHz (0.5 ns)↪→

/0/22/16 memory DIMM

[empty]↪→

/0/22/17 memory DIMM

[empty]↪→

/0/3c memory

576KiB L1 cache↪→

/0/3d memory

576KiB L1 cache↪→

/0/3e memory

4608KiB L2 cache↪→

/0/3f memory 45MiB

L3 cache↪→

/0/40 processor

Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz↪→

/0/41 memory

576KiB L1 cache↪→

/0/42 memory

576KiB L1 cache↪→

/0/43 memory

4608KiB L2 cache↪→

/0/44 memory 45MiB

L3 cache↪→

/0/45 processor

Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz↪→

/0/100 bridge Xeon

E7 v3/Xeon E5 v3/Core i7 DMI2↪→

/0/100/1 bridge Xeon

E7 v3/Xeon E5 v3/Core i7 PCI Express Root Port 1↪→

/0/100/1/0 eth2 network I350

Gigabit Network Connection↪→

/0/100/1/0.1 eth0 network I350

Gigabit Network Connection↪→

/0/100/1.1 bridge Xeon

E7 v3/Xeon E5 v3/Core i7 PCI Express Root Port 1↪→

/0/100/2 bridge Xeon

E7 v3/Xeon E5 v3/Core i7 PCI Express Root Port 2↪→

/0/100/2/0 bridge VIC

82 PCIe Upstream Port↪→

/0/100/2/0/0 bridge VIC

PCIe Downstream Port↪→

/0/100/2/0/0/0 generic VIC

Management Controller↪→

/0/100/2/0/1 bridge VIC

PCIe Downstream Port↪→

/0/100/2/0/1/0 bridge VIC

PCIe Upstream Port↪→

/0/100/2/0/1/0/0 bridge VIC

PCIe Downstream Port↪→

/0/100/2/0/1/0/0/0 em1 network VIC

Ethernet NIC↪→

/0/100/2/0/1/0/1 bridge VIC

PCIe Downstream Port↪→

/0/100/2/0/1/0/1/0 em2 network VIC

Ethernet NIC↪→

/0/100/2/0/1/0/2 bridge VIC

PCIe Downstream Port↪→

/0/100/2/0/1/0/2/0 bus VIC

FCoE HBA↪→

/0/100/2/0/1/0/3 bridge VIC

PCIe Downstream Port↪→

/0/100/2/0/1/0/3/0 bus VIC

FCoE HBA↪→

/0/100/2.2 bridge Xeon

E7 v3/Xeon E5 v3/Core i7 PCI Express Root Port 2↪→

/0/100/2.2/0 scsi0 storage

MegaRAID SAS-3 3108 [Invader]↪→

/0/100/2.2/0/2.0.0 /dev/sda disk

797GB UCSC-MRAID12G↪→

/0/100/2.2/0/2.0.0/1 /dev/sda1 volume

615GiB EXT4 volume↪→

/0/100/2.2/0/2.0.0/2 /dev/sda2 volume

127GiB Extended partition↪→

/0/100/2.2/0/2.0.0/2/5 /dev/sda5 volume

127GiB Linux swap / Solaris partition↪→

/0/100/3 bridge Xeon

E7 v3/Xeon E5 v3/Core i7 PCI Express Root Port 3↪→

/0/100/5 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Address Map, VTd_Misc,
System Management

↪→

↪→

/0/100/5.1 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Hot Plug↪→

/0/100/5.2 generic Xeon
E7 v3/Xeon E5 v3/Core i7 RAS, Control Status and
Global Errors

↪→

↪→

/0/100/5.4 generic Xeon

E7 v3/Xeon E5 v3/Core i7 I/O APIC↪→
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/0/100/11 generic

C610/X99 series chipset SPSR↪→

/0/100/11.4 storage
C610/X99 series chipset sSATA Controller [AHCI
mode]

↪→

↪→

/0/100/16 communication

C610/X99 series chipset MEI Controller #1↪→

/0/100/16.1 communication

C610/X99 series chipset MEI Controller #2↪→

/0/100/1a bus C610/X99

series chipset USB Enhanced Host Controller #2↪→

/0/100/1c bridge

C610/X99 series chipset PCI Express Root Port #1↪→

/0/100/1c.3 bridge

C610/X99 series chipset PCI Express Root Port #4↪→

/0/100/1c.3/0 display MGA

G200e [Pilot] ServerEngines (SEP1)↪→

/0/100/1d bus C610/X99

series chipset USB Enhanced Host Controller #1↪→

/0/100/1f bridge

C610/X99 series chipset LPC Controller↪→

/0/100/1f.2 storage
C610/X99 series chipset 6-Port SATA Controller
[AHCI mode]

↪→

↪→

/0/1 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/3 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/4 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/6 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/7 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/8 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/9 generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/a generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/b generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/c generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/d generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/e generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/f generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/10 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/11 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/12 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/13 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/14 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/15 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/16 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/17 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/18 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/19 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/1a generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/1b generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/1c generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/1d generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/1e generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/1f generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/20 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/21 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/23 generic Xeon
E7 v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/24 generic Xeon
E7 v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/25 generic Xeon
E7 v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/26 generic Xeon

E7 v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/27 generic Xeon

E7 v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/28 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/29 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/2a generic Xeon
E7 v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→
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/0/2b generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 0↪→

/0/2c generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 0↪→

/0/2d generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/2e generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/2f generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/30 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/31 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/32 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/33 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 0/1 Broadcast↪→

/0/34 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/35 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 Thermal Control

↪→

↪→

/0/36 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 Thermal Control

↪→

↪→

/0/37 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 ERROR Registers

↪→

↪→

/0/38 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 ERROR Registers

↪→

↪→

/0/39 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/3a generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/3b generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/46 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/47 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/48 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/49 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/4a generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/4b generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 2/3 Broadcast↪→

/0/4c generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/4d generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 Thermal Control

↪→

↪→

/0/4e generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 Thermal Control

↪→

↪→

/0/4f generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 ERROR Registers

↪→

↪→

/0/50 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 ERROR Registers

↪→

↪→

/0/51 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/52 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/53 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/54 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/55 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/56 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/57 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/58 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/59 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/5a generic Xeon

E7 v3/Xeon E5 v3/Core i7 VCU↪→

/0/5b generic Xeon

E7 v3/Xeon E5 v3/Core i7 VCU↪→

/0/2 bridge Xeon

E7 v3/Xeon E5 v3/Core i7 PCI Express Root Port 2↪→

/0/5 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Address Map, VTd_Misc,
System Management

↪→

↪→

/0/5.1 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Hot Plug↪→

/0/5.2 generic Xeon
E7 v3/Xeon E5 v3/Core i7 RAS, Control Status and
Global Errors

↪→

↪→

/0/5.4 generic Xeon

E7 v3/Xeon E5 v3/Core i7 I/O APIC↪→

/0/5c generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/5d generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 0↪→
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/0/5e generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 0↪→

/0/5f generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/60 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/61 generic Xeon

E7 v3/Xeon E5 v3/Core i7 QPI Link 1↪→

/0/62 generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/63 generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/64 generic Xeon E7

v3/Xeon E5 v3/Core i7 R3 QPI Link 0 & 1 Monitoring↪→

/0/65 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/66 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/67 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/68 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/69 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/6a generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/6b generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/6c generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/6d generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/6e generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/6f generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/70 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/71 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/72 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/73 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/74 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/75 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/76 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Unicast Registers↪→

/0/77 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/78 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/79 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/7a generic Xeon

E7 v3/Xeon E5 v3/Core i7 Buffered Ring Agent↪→

/0/7b generic Xeon
E7 v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/7c generic Xeon
E7 v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/7d generic Xeon
E7 v3/Xeon E5 v3/Core i7 System Address Decoder &
Broadcast Registers

↪→

↪→

/0/7e generic Xeon

E7 v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/7f generic Xeon

E7 v3/Xeon E5 v3/Core i7 PCIe Ring Interface↪→

/0/80 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/81 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/82 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Scratchpad & Semaphore
Registers

↪→

↪→

/0/83 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 0↪→

/0/84 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 0↪→

/0/85 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/86 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Home Agent 1↪→

/0/87 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/88 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
0 Target Address, Thermal & RAS Registers

↪→

↪→

/0/89 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/8a generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel Target Address Decoder

↪→

↪→

/0/8b generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 0/1 Broadcast↪→

/0/8c generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/8d generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 Thermal Control

↪→

↪→

/0/8e generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 Thermal Control

↪→

↪→
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/0/8f generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 0 ERROR Registers

↪→

↪→

/0/90 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 0 Channel 1 ERROR Registers

↪→

↪→

/0/91 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/92 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/93 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/94 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 0 & 1↪→

/0/95 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/96 generic Xeon E7
v3/Xeon E5 v3/Core i7 Integrated Memory Controller
1 Target Address, Thermal & RAS Registers

↪→

↪→

/0/97 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/98 generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel Target Address Decoder

↪→

↪→

/0/99 generic Xeon E7

v3/Xeon E5 v3/Core i7 DDRIO Channel 2/3 Broadcast↪→

/0/9a generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO Global Broadcast↪→

/0/9b generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 Thermal Control

↪→

↪→

/0/9c generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 Thermal Control

↪→

↪→

/0/9d generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 0 ERROR Registers

↪→

↪→

/0/9e generic Xeon
E7 v3/Xeon E5 v3/Core i7 Integrated Memory
Controller 1 Channel 1 ERROR Registers

↪→

↪→

/0/9f generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/a0 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/a1 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/a2 generic Xeon

E7 v3/Xeon E5 v3/Core i7 DDRIO (VMSE) 2 & 3↪→

/0/a3 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/a4 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/a5 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/a6 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/a7 generic Xeon

E7 v3/Xeon E5 v3/Core i7 Power Control Unit↪→

/0/a8 generic Xeon

E7 v3/Xeon E5 v3/Core i7 VCU↪→

/0/a9 generic Xeon

E7 v3/Xeon E5 v3/Core i7 VCU↪→
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