
Redundant Loads: A Software Inefficiency Indicator

Pengfei Su, Shasha Wen
College of William & Mary
{psu, swen}@email.wm.edu

Hailong Yang
Beihang University

hailong.yang@buaa.edu.cn

Milind Chabbi
Scalable Machines Research
milind@scalablemachines.org

Xu Liu
College of William & Mary

xl10@cs.wm.edu

Abstract—Modern software packages have become increas-
ingly complex with millions of lines of code and references
to many external libraries. Redundant operations are a com-
mon performance limiter in these code bases. Missed compiler
optimization opportunities, inappropriate data structure and
algorithm choices, and developers’ inattention to performance
are some common reasons for the existence of redundant op-
erations. Developers mainly depend on compilers to eliminate
redundant operations. However, compilers’ static analysis often
misses optimization opportunities due to ambiguities and limited
analysis scope; automatic optimizations to algorithmic and data
structural problems are out of scope.

We develop LOADSPY, a whole-program profiler to pinpoint
redundant memory load operations, which are often a symptom
of many redundant operations. The strength of LOADSPY exists
in identifying and quantifying redundant load operations in pro-
grams and associating the redundancies with program execution
contexts and scopes to focus developers’ attention on problematic
code. LOADSPY works on fully optimized binaries, adopts various
optimization techniques to reduce its overhead, and provides a
rich graphic user interface, which make it a complete developer
tool. Applying LOADSPY showed that a large fraction of re-
dundant loads is common in modern software packages despite
highest levels of automatic compiler optimizations. Guided by
LOADSPY, we optimize several well-known benchmarks and real-
world applications, yielding significant speedups.

Index Terms—Whole-program profiling, Software optimiza-
tion, Performance measurement, Tools.

I. INTRODUCTION

Production software packages have become increasingly

complex. They are comprised of a large amount of source

code, sophisticated control and data flow, a hierarchy of

component libraries, and growing levels of abstractions. This

complexity often introduces inefficiencies across the software

stacks, leading to resource wastage, performance degradation,

and energy dissipation [1], [2]. Such inefficiencies are usu-

ally in the form of useless or redundant operations, such

as computations whose results may not be used [3], [4],

re-computation of already computed values [5], unnecessary

data movement [6]–[10], and excessive synchronization [11],

[12]. The provenance of these inefficiencies can be many:

rigid abstraction boundaries, missed opportunities to optimize

common cases, suboptimal algorithm design, inappropriate

data structure selection, and poor compiler code generation.

There is a long history of compiler optimizations aimed at

statically analyzing and eliminating redundant operations by

techniques such as common sub-expression elimination [13],

value numbering [14], constant propagation [15], to name a

few. However, they have a myopic view of the program, which

limits their analysis to a small scope—individual functions

or files. Layers of abstractions, dynamically loaded libraries,

multi-lingual components, aggregate types, aliasing, sophisti-

cated flows of control, input-specific path-specific redundan-

cies, and combinatorial explosion of execution paths make

it practically impossible for compilers to obtain a holistic

view of an application to eliminate all redundancies. Link-

time optimization [16] can offer better visibility, however, the

analysis is still conservative and may err on the side of being

less exhaustive to reduce prohibitive analysis cost. Whole-

program link-time optimizations [17], [18] have provided less

than 5% average speedup, although a lot more headroom exists

as we show in our work. Thus, despite their best efforts,

compilers often fall short of eliminating runtime inefficiencies.

Execution profiling aims to understand the runtime be-

havior of a program. Performance analysis tools such as

HPCToolkit [19], VTune [20], perf [21], gprof [22], OPro-

file [23], and CrayPAT [24] monitor code execution to identify

hot code regions, idle CPU cycles, arithmetic intensity, and

cache misses, etc. These tools can recognize the utilization

(saturation or underutilization) of hardware resources, but they

cannot inform whether a resource is being used in a fruitful
manner that contributes to the overall efficiency of a program.

A hotspot need not mean inefficient code, and conversely, the

lack of a hotspot need not mean better code. Coarse-grained

profilers usually cannot distinguish efficient vs. inefficient

code; for example, they cannot identify that repeated memory

loads of the same value or result-equivalent computations

waste both memory bandwidth and processor functional units.

Whole-program fine-grained monitoring is a means to mon-

itor execution at microscopic details: it monitors each binary

instruction instance, including its operator, operands, and

runtime values in registers and memory. A key advantage of

microscopic program-wide monitoring is that it can identify re-

dundancies irrespective of the user-level program abstractions.

Prior work [5], [6], [10], [25] has shown that the fine-grained

profiling techniques can identify many forms of software

inefficiencies and offer detailed guidance to tune code.

Existing fine-grained profilers pinpoint inefficiencies in

a subset of individual operations such as operations with

symbolic equivalence [5], dead memory stores [6], and op-

erations writing same values to target registers or memory

locations [10]. They have, however, overlooked an important

category temporal load redundancy—loading the same value

from the same memory location. For instance, the code on the

left of Listing 1 shows redundant operations that are invisible

982

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00103

1 while (t < threshold) {
2 t = 0;
3 for(i = 0; i < N; i++)
4 � t += A[i] + B[i]*delta;
5 delta -= 0.1 * t;
6 }

1 for (i = 0; i < N; i++)
2 a += A[i]; b += B[i];
3 while (t < threshold) {
4 t = a + b * delta;
5 delta -= 0.1 * t;
6 }

Listing 1: An example code (on the left) with temporal inefficiencies
that cannot be identified by existing fine-grained profilers. Because
arrays A and B are immutable in the loop nest, computing on
these loop invariants introduces many redundancies. One can hoist
the redundant computation outside of the loop (on the right) for
optimization.

1 int A[N] = {1, 1, 1, 15};
2 for(i = 0; i < N; i++)
3 {
4 � t += func(A[i]);
5 }

1 int A[N] = {1, 1, 1, 15};
2 a = func(A[0]);
3 for(i = 0; i < N; i++) {
4 if (A[i] != A[i-1])
5 a = func(A[i]);
6 t += a; }

Listing 2: An example code (on the left) with spatial inefficiencies
that cannot be identified by existing fine-grained profilers. The load
redundancy happens at line 4 where the program reads the same value
from the nearby memory locations since some adjacent elements of
array A have the same value. Such redundancy further results in
redundant computation involved in the function func. Because func
always returns the same value for the same input. One can compare if
the adjacent elements in array A are equivalent to eliminate redundant
computation (on the right). If they are the same, one can reuse the
return value of func, which is generated in the previous iteration.

in existing fine-grained profilers. In this code, suppose all the

scalars are in registers and vectors are in memory. Because

there are no “dead store” operations (a store followed by

another store to the same location without an intervening

load), DeadSpy [6] does not identify any inefficiency. Since

the values written in t and delta always change, RedSpy [10]

does not report any “silent store” operations [7]. Finally,

since there is no symbolic equivalent computation, RVN [5]

does not report any inefficiency. Furthermore, because the

optimization involves the mathematically equivalent transfor-

mation, as shown on the right of Listing 1, it is difficult to

optimize with other compiler techniques such as polyhedral

optimization [26].

The code on the left of Listing 2 shows another kind of

load redundancy, which loads the same value from the nearby
memory locations. Even though each element of array A is

only loaded once, adjacent elements with the same values

result in loading the same value and the subsequent redundant

computation. We refer to this type of redundancy as spatial
load redundancy. As a practical example, a sparse matrix with

a dense format can yield many spatial load redundancies.

Listing 1 and 2 show a tip of the iceberg of the inefficiencies

we target in this paper to complement existing tools. From

our observation, a variety of inefficiencies exhibit substantial
redundant loads; conversely, the presence of a large fraction of

redundant loads in an execution is a symptom of some kind of

inefficiency in the code regions that exhibit such redundancy.

Furthermore, the subsequent operations based on redundant

loads are potentially redundant.

We have designed and implemented a developer tool—

LOADSPY—aimed at profiling an execution and quantifying

load redundancy in the execution. LOADSPY highlights precise

source code in its full calling contexts and the two parties

involved in a redundant load. Additionally, LOADSPY narrows

down the investigation scope to help developers focus on the

provenance of inefficiencies. A thorough evaluation on a suite

of benchmarks and real-world applications shows that looking

for redundant loads in a program offers an easy avenue for

performance enhancement in many programs.

In this paper, we make the following contributions:

• Show that redundant loads are a common indicator of

various forms of software inefficiencies. This finding serves

as the foundation of LOADSPY.

• Describe the design of LOADSPY—a whole-program fine-

grained profiler to pinpoint redundant loads.

• Develop strategies for analyzing a large volume of profiling

data by attributing redundancy to runtime contexts, objects,

and scopes.

• Enable rich visualization for a large volume of profiling data

coming from different threads/processes with a user-friendly

GUI, which improves the usability for non-experts.

• Apply LOADSPY to pinpoint inefficiencies in well-known

benchmarks and real-world applications that were the sub-

jects of study and optimization for years and eliminate

LOADSPY-found inefficiencies by avoiding redundant loads,

which yield nontrivial speedups.

II. RELATED WORK

There exist many compiler techniques and static analysis

techniques [13], [27]–[29] to identify redundant computation.

However, these static approaches suffer from limitations re-

lated to the precision of alias information, optimization scope,

and insensitivity to inputs and execution contexts. To address

these issues, recent approaches convert the source code to spe-

cific notations for redundancy detection and removal [30], or

target specific algorithm for optimization [31]. However, these

approaches require substantial prior knowledge to identify

whether a program suffers from redundancies that are worthy

of optimization. In contrast, LOADSPY monitors execution,

avoids inaccuracies associated with compile-time analysis, and

needs no prior knowledge of the measured programs.

There exist many hardware-based approaches [3], [7], [32]–

[37] that optimize redundant operations during program ex-

ecution. However, these approaches require hardware exten-

sion, which is unavailable in commodity processors. Instead,

LOADSPY is a pure software approach and does not need any

hardware changes. The remaining section reviews only other

profiling techniques.

A. Value profiling

LOADSPY is a value-aware profiler; value profiling tech-

niques are closely related to our work. Calder et al. [38]–

[40] proposed probably the first value profiler on DEC Alpha

processors. They instrumented the program code and recorded

top N values to pinpoint invariant or semi-invariant variables

stored in registers or memory. A variant of this value profiler

was proposed in a later research [41]. Burrows et al. [42] used

hardware performance counters to sample values in Digital

983

Continuous Profiling Infrastructure [43]. Wen et al. [44] com-

bined performance monitoring units and debug registers avail-

able in x86 to identify redundant memory operations. These

approaches do not explore whole-program load redundancy in

depth. Moreover, none of them detect spatial redundancy.

Some code specialization work depends on value profiling.

However, these approaches limit themselves to only analyzing

registers [45], static instructions [46], memory store opera-

tions [10], or functions [47]–[49]. They omit many optimiza-

tion opportunities and require significant manual efforts to

reason about the root causes of inefficiencies.

Unlike existing value profilers, LOADSPY has four distinct

features. First, LOADSPY is the first value profiler that tracks

the history of loaded values from individual memory locations,

rather than the values produced by individual instructions.

Second, LOADSPY identifies both temporal and spatial re-

dundancies in load operations. Third, LOADSPY provides

novel redundancy scope and metrics to guide optimization

in both contexts and semantics. Fourth, LOADSPY not only

identifies redundancy arising due to exactly the same values

but also identifies redundancy due to approximately equal

values, which offers opportunities for approximate computing.

B. Value-agnostic profiling

RVN [5] assigns symbolic values to dynamic instructions

and identifies redundancy on the fly. DeadSpy [6] tracks

every memory operation to pinpoint a store operation that is

not loaded before a subsequent store to the same location.

MemoizeIt [50] detects Java methods that perform identical

computations. Travioli [51] detects redundant data structure

traversals. These approaches miss out on certain opportunities

that LOADSPY can detect by explicitly inspecting values

generated at runtime.

Toddler [25] has to manually add loop events to instrument

loops in a C code base and only identifies repetitive memory

loads across loop iterations. The follow-on work LDoctor [52]

reduces Toddler’s overhead using a combination of ad-hoc

sampling and static analysis techniques. LDoctor instruments

a small number of suspicious loops at compile time. This

technique can miss redundant loads in different loops. In

contrast, LOADSPY works on fully optimized binaries, is

independent of any compiler, and performs the whole-program

profiling instead of limiting itself to only profiling loops.

III. REDUNDANT LOADS: AN INEFFICIENCY SYMPTOM

While there are several ways to identify the inefficiency,

LOADSPY focuses on memory load operations. If two consec-

utive load operations performed on the same memory location

load the same value, the second load operation can be deemed

useless. Thus, the second load could potentially be elided. Our

study aims to quantify redundant loads and attribute them

to the code regions that cause them. A single instance of
a redundant load is uninteresting; highly frequent redundant
loads occurring in the same code location demand attention.

It is easy to imagine how redundant loads happen: re-

peatedly accessing immutable data structures or algorithms

employing memoization. It is equally easy to see how inef-

ficient code sequences show up as redundant loads: missed

inlining appears as repeatedly loading the same values in a

callee, imperfect alias information shows up as loading the

same values from the same location via two different pointers,

redundant computations show up as the same computations

being performed by loading unchanged values, algorithmic

defects, e.g., frequent linear searches or hash collisions, also

appear as repeatedly loading unchanged values from the same

locations.

Definition 1 (Temporal Load Redundancy). A memory load
operation L2, loading value V2 from location M , is redundant
iff the previous load operation L1, performed on M , loaded
a value V1 and V1 = V2. If V1 ≈ V2, we call it approximate
temporal load redundancy.

Definition 2 (Spatial Load Redundancy). A memory load op-
eration L2, loading a value V2 from location M2, is redundant
iff the previous load operation L1, performed on location
M1, loaded a value V1 and V1 = V2, and M1 and M2 belong
to the address span of the same data object. If V1 ≈ V2, we
call it approximate spatial load redundancy.

Definition 3 (Redundancy Fraction). We define the redundancy

fraction R in an execution as the ratio of bytes redundantly
loaded to the total bytes loaded in the entire execution.

We emphasize that the redundancy is defined for instruc-

tion instances, not static instructions. Deleting an instruction

involved in one instance of a redundant load can be unsafe.

Observation 1. Large redundancy fraction (R) in the execu-
tion profile of a program is a symptom of some kind of software
inefficiency.

Redundant loads are neither a necessary condition nor a

sufficient condition to capture all kinds of software inefficien-

cies. However, we show, with many illustrative case studies,

that a large fraction of redundant loads in the same code
region is often a symptom of a serious inefficiency. We notice

frequent redundant loads across the board in many programs

irrespective of optimization levels, raising a warning alarm

of potential inefficiency. Although not all redundant loads

demand optimization, in our experience, investigating the top

few contributors in a profile offers a high potential to tune and

optimize code. Looking for load redundancy opens potentially

an easy avenue for code optimization—manual or automatic.

We measure the redundancy fraction in a number of bench-

marks SPEC CPU2006 [53], PARSEC-2.1 [54], Rodinia-

3.1 [55], and NERSC-8 [56]. We compile these benchmarks

with gcc-4.8.5 -O3, link-time optimization (LTO) and

profile-guided optimization (PGO), which is one of the highest

optimization levels. In practice, most packages do not use this

level of optimization.

We observe that a large load redundancy fraction correlates

with some kind of inefficiency. Furthermore, the code that

generates many redundant loads is responsible for the ineffi-

ciencies in the program. We classify the causes of redundant

984

1 for (j = 1; j <= ndelta; j++) {
2 for (k = 0; k <= nly; k++) {
3 � new_dw = ((ETA*delta[j]*ly[k])+(MOMENTUM*oldw[k][j]));
4 w[k][j] += new_dw;
5 oldw[k][j] = new_dw;
6 }}

Listing 3: Spatial load redundancy in Rodinia-3.1 backprop. Arrays
delta and oldw are repeatedly loaded from memory whereas most
array elements are zero.

loads according to their provenance: input-sensitive redundant

loads, inefficient data structure/algorithm designs, or missing

compiler optimizations. Different kinds of inefficiencies re-

quire different optimization strategies.

A. Input-sensitive Redundant Loads

In this section, we classify the inefficiency due to inputs.

Rodinia-3.1 backprop [55], a supervised machine learning

algorithm, trains the weights of connections in a neural net-

work. The redundancy fraction of this program is 64%. It

is common knowledge that as the training progresses, many

weights stabilize and do not change. Hence, their gradients

become and remain zero. Listing 3 shows the inefficiency at

line 3, where the majority of elements in arrays delta and

oldw are zeros. Computations at lines 3-5 can be bypassed

when delta[j] and oldw[k][j] are zeros. Repeatedly

loading the zero value from delta[j] and oldw[k][j]
shows up as spatial load redundancy. It is easy to eliminate the

input-sensitive redundant loads by predicating the subsequent

computation on the values of delta[j] and oldw[k][j]
being non-zero.

B. Redundant Loads due to Suboptimal Data Structures and
Algorithms

Inefficiencies of this category require semantics to identify

and optimize. These inefficiencies also incur a significant

number of redundant loads. We illustrate some algorithms that

introduce inefficiencies in a few well-known benchmarks.

a) Linear search: Rodinia-3.1 particlefilter [55] is used

to estimate the location of a target object in signal pro-

cessing and neuroscience. The redundancy fraction of this

program is 99%. Listing 4 shows the inefficiency in function

findIndex, which performs a linear search (line 3) over

a sorted array CDF to determine the location of a given

particle. This linear search is called multiple times in a loop

to become the bottleneck of the program. The symptom of

this inefficiency is many redundant loads, which is caused

by the repeated loads of immutable array CDF elements in

different invocation instances of function findIndex. To fix

this problem, one can replace the linear search with a binary

search, which reduces the volume of redundant loads.

b) Hash table: Parsec-2.1 dedup [54] compresses data

via deduplication. The redundancy fraction of this program is

75%. Listing 5 shows the inefficiency in the program, which

searches for an item in a linked list associated with a hash

table entry. The inefficiency comes from the frequent execution

on the slow path due to the hash collision. We noticed that

only ∼2% hash buckets are occupied, and the slow path is

1 int findIndex(double *CDF, int lengthCDF, double value) {
2 for(x = 0; x < lengthCDF; x++) {
3 � if (CDF[x] >= value) {
4 index = x; break;
5 }}
6 ...
7 return index;
8 }
9 ...

10 for(j = 0; j < Nparticles; j++)
11 i = findIndex(CDF, Nparticles, u[j]);

Listing 4: Temporal load redundancy in Rodinia-3.1 particlefilter. A
linear search loads the same values from the same memory locations.

1 struct hash_entry *hashtable_search(struct hashtable *h,
void *k) {

2 struct hash_entry *e;
3 unsigned int hashvalue, index;
4 hashvalue = hash(h,k);
5 index = indexFor(h->tablelength,hashvalue);
6 e = h->table[index];
7 while (NULL != e) {
8 � if ((hashvalue == e->h) && (h->eqfn(k, e->k))) return e;
9 e = e->next;

10 } ...}

Listing 5: Temporal load redundancy in Parsec-2.1 dedup. Excessive
hash collisions in linear hashing result in long linked lists.

frequently taken. The linked list traversal on the slow path

loads the same values from the same locations (line 8), which

results in redundant loads. One can improve the hash function

to make hash keys uniformly distributed among buckets, which

will reduce the redundancy and hence the inefficiency.

C. Redundant Loads due to Missing Compiler Optimizations

Inefficiencies of this category occur in small scopes—loop

nests or procedure calls. One needs to either curate the code

or manually apply transformations to eliminate these ineffi-

ciencies. The following three examples illustrate our findings.

a) Missing scalar replacement: Rodinia-3.1 hotspot

3D [55] is a thermal simulation program that estimates pro-

cessor temperature. The redundancy fraction of this program

is 95%. Listing 6 shows a loop nest that performs a stencil

computation. At line 8, tOut_t[c] is updated with the

values in nearby tIn_t[]. Typically, w = c - 1 and e =
c + 1. As a result, the value of tIn_t[e] in the current

iteration equals the value of tIn_t[c] in the next iteration

and further equals the value of tIn_t[w] in the iteration

after the next. However, the compiler does not perform register

promotion of tln_[e]. Hence, many redundant loads occur

in this loop nest. To fix this inefficiency, we employ the

scalar replacement to eliminate inter-iteration redundant loads

from memory. Specifically, we store the value of tIn_t[e]
in a local variable in the current iteration to be reused by

tIn_t[c] in the next iteration and by tIn_t[w] in the

iteration after the next.

b) Missing constant propagation: NERSC-8 ms-

grate [56] measures the message passing rate via the MPI

interface. The redundancy fraction of this program is 97%.

Listing 7 shows a procedure cache_invalidate, which

sets all the elements in array cache_buf to 1. This code

adopts a suboptimal forward propagation that loads the value

of cache_buf[i-1] and assigns it to cache_buf[i].

985

1 for(y = 0; y < ny; y++) {
2 for(x = 0; x < nx; x++) {
3 int c, w, e, n, s, b, t;
4 c = x + y * nx + z * nx * ny;
5 w = (x == 0) ? c : c - 1;
6 e = (x == nx - 1) ? c : c + 1;
7 ...
8 � tOut_t[c] = cc*tIn_t[c]+cw*tIn_t[w]+ce*tIn_t[e]+...
9 }}

Listing 6: Temporal load redundancy in Rodinia-3.1 hotspot3D.
Array tIn_t is repeatedly loaded from memory while the values
remain unchanged.

1 int *cache_buf;
2 ...
3 static void cache_invalidate(void) {
4 int i;
5 cache_buf[0] = 1;
6 for (i = 1; i < cache_size; ++i)
7 � cache_buf[i] = cache_buf[i-1];
8 }

Listing 7: Temporal load redundancy in NERSC-8 msgrate. The
program repeatedly loads a constant “1” from array cache_buf.

Although there is no redundant load in one invocation of this

function, procedure cache_invalidate is called in a loop

(not shown in the listing), resulting in excessive, redundant

loads from array cache_buf. The compiler does not replace

the assignment with a constant, possibly due to its inability to

prove the safety of assigning to a global array in the presence

of concurrent threads of execution.
c) Missing inline substitution: SPEC CPU2006

464.h264ref [53] is a reference implementation of H.264,

a standard of video compression. The redundancy fraction

of this program is 84%. The compiler fails to inline the

frequently called function PelYline_11 at line 8 shown

in Listing 8. Because it is invoked via a function pointer

and the callee routines are not present in the same file. The

parameters of PelYline_11—abs_x, img_height, and

img_width—are unmodified across multiple successive

invocations. In each invocation, the caller pushes the same

parameters on the same stack, and then the callee loads

the same values from the same location, which show up as

redundant loads. To fix the problem, we need to manually

inline the function [10].
d) Discussion: We have explored other compiler flags

that enable advanced optimization such as polyhedral opti-

mization [57] in GCC. Unfortunately, the polyhedral optimiza-

tion was unsuccessful in optimizing any of the aforementioned

scenarios. Furthermore, we observed that using LTO, PGO, to-

gether with the polyhedral optimization made compilation time

extremely high for some cases. For example, it took over two

hours to compile hotspot 3D, a 30,000× slowdown compared

to simply using -O3. As a result, our later evaluation section

does not use LTO and polyhedral optimization, but only uses

-O3 with PGO. We leave the effectiveness of other compilers

such as LLVM [58] and ICC [59] on the same set of programs

for a future study.

IV. LOADSPY IMPLEMENTATION

LOADSPY employs Intel Pin [60] to intercept every mem-

ory load operation. The instrumentation obtains the effective

1 for (pos = 0; pos < max_pos; pos++) {
2 ...
3 if(abs_y >= 0 && abs_y <= max_height && ...)
4 PelYline_11 = FastLine16Y_11;
5 else PelYline_11 = UMVLine16Y_11;
6 for (blky = 0; blky < 4; blky++) {
7 for (y = 0; y < 4; y++) {
8 � refptr = PelYline_11(ref_pic, abs_y++, abs_x,

img_height, img_width);
9 ...

10 } ...}}

Listing 8: Temporal load redundancy in SPEC CPU2006 464.h264ref
due to missing function inlining.

address M to be accessed in the instruction, the access length

δ, and offers the pair to a runtime analysis routine. In the rest

of this section, we discuss how LOADSPY identifies temporal
and spatial load redundancies, respectively.

A. Detecting Temporal Load Redundancy

Detecting temporal load redundancy requires two pieces of

information: the current value vnew at the target location and

the last-time loaded value vold from the same location. The

runtime analysis routine, run just before the execution of the

original program’s load instruction, fetches the current value

vnew at the memory range [M : M + δ). LOADSPY employs

a shadow memory S for maintaining the last-time loaded

value at the same location. S[M] maintains the value last

loaded by the program at location M . LOADSPY utilizes the

page-table-based scheme [6] to efficiently manage its shadow

memory. At runtime, the analysis routine fetches vold from

S[M : M+δ) and vnew from [M : M+δ). LOADSPY records

an instance of a redundant load if vold = vnew. All bytes must

match to qualify a load as redundant. Intuitively, sub-read-

size redundancy is not actionable by the programmer. Note,

however, that vold might have been generated by multiple

shorter reads, a single longer read, or more commonly a single

read of the same size. If not redundant, LOADSPY updates the

shadow memory with the newly loaded value. Also, LOADSPY

records an instance of a non-redundant load if vold �= vnew.

LOADSPY provisions for approximate computation by al-

lowing the new value generated in a floating-point (FP) oper-

ation to approximately match the previously present value. If

the two values are within a threshold of difference, LOADSPY

considers them approximately equal and records an instance

of a redundant load. The threshold is tunable; we use 1% in

our experiments. Accordingly, LOADSPY decomposes the load

redundancy into precise and approximate.

LOADSPY attributes each instance of redundant loads (and

non-redundant loads) to two parties 〈Cold, Cnew〉 involved

in two operations, where Cold is the calling context of the

previous load operation on M and Cnew is the calling context

of the current load operation on M .

The following equations compute the fraction of temporal

load redundancy in an execution:

Rprecise
prog =

∑
i

∑
j Redundant non-FP bytes loaded in 〈Ci, Cj〉

∑
i

∑
j non-FP bytes loaded in 〈Ci, Cj〉

Rapprox
prog =

∑
i

∑
j Redundant FP bytes loaded in 〈Ci, Cj〉

∑
i

∑
j FP bytes loaded in 〈Ci, Cj〉

(1)

986

Load redundancy between a pair of calling contexts is given

by the following equations:

Rprecise
〈Cold,Cnew〉 =

Redundant non-FP bytes loaded in 〈Cold, Cnew〉
∑

i

∑
j non-FP bytes loaded in 〈Ci, Cj〉

Rapprox
〈Cold,Cnew〉 =

Redundant FP bytes loaded in 〈Cold, Cnew〉
∑

i

∑
j FP bytes loaded in 〈Ci, Cj〉

(2)

The metrics help identify code regions (pairs of calling con-

texts) where the highest amount of redundancy is observed.

Obtaining the Runtime Calling Context of an Instruction:
Attributing runtime statistics to a flat profile (just an

instruction pointer) does not offer full insights for

developers. For example, attributing redundant loads to

a common library function, e.g., strcmp, offers little

insight since strcmp can be invoked from several

places in a large code base; some invocations may not

even be obvious to the user code. A detailed attribution

demands associating profiles to the full calling context:

main():line->A():line->...->strcmp():line.

LOADSPY requires obtaining the calling context on each

load operation since each load—redundant or not. LOADSPY

employs CCTLib [61], which efficiently maintains calling

contexts as a calling context tree (CCT) [62] including

complex control flows through longjump, tail calls, and

exceptions. The calling context, which is provided as a unique

32-bit integer, is recorded (in addition to the last-time loaded

value) in the shadow memory.

B. Detecting Spatial Load Redundancy

For arrays and aggregate objects, LOADSPY checks whether

two consecutive loads from any element of the same object

load (approximately) the same value. For example, if two

consecutive loads from an array a, say a[i] and a[j], load

the same value, LOADSPY flags it as an instance of spatial
load redundancy and attributes it to the same data object.

To facilitate spatial load redundancy detection, LOADSPY

maintains a mapping from address ranges to active data objects

in a shadow memory. Associated with each data object O is

two additional pieces of information: a singleton value vold
loaded as a result of the previous load operation performed on

O and the calling context Cold associated with the previous

load operation performed on O. Upon each memory load,

LOADSPY uses the effective address of the load operation to

look up the data object it belongs to in the map. If the value of

the current load matches the one recorded with the previous

load on the same object, LOADSPY records an instance of

spatial load redundancy. The redundancy is hierarchically

attributed first to the data object involved and then to the two

calling contexts involved in the redundancy.

LOADSPY provides the similar whole-program and per-

redundancy-pair metrics for spatial redundancy. Moreover,

LOADSPY computes the per-data-object metrics with the fol-

lowing equations where O is a data object.

Rprecise
O =

Redundant non-FP bytes in object O
∑

i non-FP bytes in object i

Rapprox
O =

Redundant FP bytes in object O
∑

i FP bytes in object i

(3)

Obtaining Data-object Addresses at Runtime: LOADSPY

monitors static and dynamic data objects but ignores stack

objects from spatial redundancy detection. Data allocated in

the .bss section in a load module are static objects. Each

static object has a named entry in the symbol table that

identifies the memory range for the object with an offset

from the beginning of the load module. The lifetime of static

objects begins when the enclosing load module (executable

or dynamic library) is loaded into memory and ends when the

load module is unloaded. LOADSPY intercepts the loading and

unloading of load modules to monitor the lifetime of static data

objects and establishes a mapping from an object’s address

range to the corresponding data object.
Dynamic objects are allocated via one of malloc family

of functions (malloc, calloc, realloc) and mmap [63].

The memories for dynamic objects are reclaimed at free and

munmap. LOADSPY intercepts these functions to establish a

mapping from an object’s address range to the corresponding

data object. Querying an address at runtime obtains a handle

to the corresponding static or dynamic object. The handle is

a unique identifier representing the object name for a static

object or the allocation calling context for a dynamic object.

C. Identifying the Redundancy Scope
When the redundancy happens in the same calling context,

that is Cold = Cnew, there is guaranteed to be a loop 1 around

the redundancy location. However, in code with nested loops, it

is unclear whether the redundancy occurred between iterations

of an inner loop or between iterations of an outer loop or some

other loop in-between. Hence, it becomes necessary to point

out the syntactic scope enclosing a redundancy pair.
We illustrate the need for scope using a real-world appli-

cation MASNUM-2.2 [65] shown on the left of Listing 9.

LOADSPY identifies 91% of memory loads are redundant

and the top contributor is at line 6. It is tempting to infer

that x(iii+1) loaded in one iteration of the inner do loop

(line 5) is loaded again as x(iii) in the next iteration. An

obvious optimization is to perform scalar replacement to retain

x(iii+1) across iterations of the inner do loop (on the right

of Listing 9). However, this optimization does not eliminate

many redundant loads. Actually, the outer do loop at line 1

repeatedly searches for an item xx, and the inner do loop

performs a linear search. As a result, the inner loop repeatedly

loads the same set of elements across two trips of the outer

loop. Thus, the load redundancy exists not only between

iterations of the inner loop but also between iterations of the

outer loop. The load redundancy at the outer loop highlights

an algorithm-level inefficiency—repeated linear searches. With

this knowledge, we can replace the linear search with a binary

search. More details are shown in § VII-B.
To assist developers to focus on the scope where load

redundancy occurs, we have incorporated a redundancy scope
feature in LOADSPY. We denote redundancy scope with the

symbol S. In Listing 9, the redundancy scope is the outer do
loop. Below we detail how redundancy scope is computed.

1We consider natural loops [64] only.

987

1 do 500 k=1, kl
2 ...
3 xx=x0-deltt*(cgx+ux(ia,ic)

)/rslat(ic)*180./pi
4 ...
5 do iii = ixs, ixl-1
6 � if(xx >= x(iii) .and. xx

<= x(iii+1)) then
7 ixx = iii; exit
8 endif
9 enddo

10 ...
11 500 continue

1 do 500 k=1, kl
2 scalar = x(ixs)
3 do iii = ixs, ixl-1
4 if(xx >= scalar) then
5 scalar = x(iii+1)
6 if (xx <= scalar) then
7 ixx = iii; exit
8 endif
9 else scalar = x(iii+1)

10 endif
11 enddo
12 ...
13 500 continue

Listing 9: A code example (on the left) from MASNUM-2.2 [65] that
requires additional information for disambiguating the scope of load
redundancy. Many redundant loads occur at line 6 where the array
x is repeatedly loaded from memory. If we only focus on the inner
loop, we would be misled to believe the stencil computation, which
loads x(iii+1) and x(iii), causes many redundant loads across
iterations of the inner loop. However, performing scalar replacement
(on the right) does not yield much speedup. An algorithmic-level
redundancy happens in the outer do loop, which repeatedly performs
linear searches for a sorted array of elements.

1 main () {
2 // loop1
3 for (i=0; i<M; i++) {
4 // loop2
5 for (k=0; k<N; k++) {
6 // load from B[i]
7 t += B[i];
8 }}}

Listing 10: Redundancy in the
inner loop scope.

1 main () {
2 // loop1
3 for (i=0; i<M; i++) {
4 // loop2
5 for (k=0; k<N; k++) {
6 // load from A[k]
7 t += A[k];
8 }}}

Listing 11: Redundancy in the
outer loop scope.

We first extend calling contexts to incorporate loop infor-

mation. Thus, the calling context of a load operation looks as

follows: main() → loop1 → f() → ... → loopn → loadold.

Additionally, LOADSPY maintains a 64-bit global timestamp

counter T that is incremented when passing through each loop

header and also through each load operation. Thus, the calling

context snapshot may appear as follows: Cold = main() →
loop1[T = 1] → f() → ... → loopn[T = 9] → loadold.

We extend the calling context E to be a tuple, that is,

Eold = 〈pointer to old context, Told〉 = 〈Cold, 10〉.
Listing 10 shows a simplified example, where the redun-

dancy happens in the inner loop (scope is loop2). In this

setting, consider the following pair of calling context snapshot:

Eold =〈main() → loop1[T = 1] → loop2[T = 2] → loadold, Told = 3〉
Enew =〈main() → loop1[T = 1] → loop2[T = 4] → loadnew, Tnew = 5〉

Notice that the counter associated with loop1 has remained

unchanged whereas the counter associated with loop2 has

changed. Each load maintains a pointer to the calling context,

not the entire calling context snapshot. Hence, by the time

the redundancy is detected, that is, loadnew is executed,

loop2[T = 2] would have gotten updated to loop2[T = 4];
traversing Cold would find Tloop2

= 4. Observe that Told <
Tloop2

< Tnew. This invariant informs that loop2 is the scope

inside which the redundancy is happening. The same invariant

does not hold for Tloop1 .

Now, consider a simplified example in Listing 11, where

redundancy happens in the outer loop (scope is loop1). In this

setting, consider the following pair of calling context snapshot:

Eold =〈main() → loop1[T = 1] → loop2[T = 2] → loadold, Told = 3〉
Enew =〈main() → loop1[T = 8] → loop2[T = 9] → loadnew, Tnew = 10〉

Notice that the counter associated with both loop1 and

loop2 have changed. Hence, by the time loadnew is executed,

loop1[T = 1] and loop2[T = 2] would have gotten updated

to loop1[T = 8] and loop2[T = 9], respectively; traversing

Cold would find Tloop1
= 8 and Tloop2

= 9. Observe that

Told < Tloop1
< Tloop2

< Tnew. The loop with the smallest T
value obeying this invariant, that is loop1, is the redundancy

scope. If there was another enclosing loop, say loop0, its

counter would not have obeyed this invariant.

Claim 1. Given a redundancy context pair
〈〈C, Told〉, 〈C, Tnew〉〉, the redundancy scope S is
the outermost enclosing loop i in C such that
Told < Tloopi < Tnew.

Proof. First, Tloopi must be in the range of (Told, Tnew) be-

cause loop i is the redundancy scope; otherwise, loop i cannot

enclose the redundant load instances. Next, assume there exists

another loop j in C such that Told < Tloopj
< Tloopi

< Tnew
but loop j is not the redundancy scope. Loop i and j cannot

be the peer loops because they are both in the same context C.

Then one loop must enclose the other. (1) If loop i encloses

loop j, Tloopi
< Tloopj

because loop j’s counter is incremented

at least once after loop i’s counter is incremented, which

contradicts the assumption that Tloopj
< Tloopi

. Hence, loop

j cannot be nested inside loop i. (2) If loop j encloses

loop i, then loop i is no longer the outermost loop with

Told < Tloopi
< Tnew. Hence, loop j cannot be enclosing

loop i. Since loop i and loop j are neither peer loops, nor

can they be nested within one another, the assumption is void.

Thus, Claim 1 holds. �

Implementing Redundancy Scope: LOADSPY combines

static and dynamic analysis to compute the redundancy scope

S for each redundancy pair. First, LOADSPY instruments each

loop header in the binary (in addition to procedures) to produce

calling contexts with augmented loop information. It identifies

an instruction as a loop header by performing an interval

analysis [66] on the binary code and integrates the information

into the procedure call path. We refer to the calling contexts

with loop information as extended contexts. A runtime analysis

routine run as a part of each loop header increments the 64-

bit timestamp counter T . The analysis routine run as a part

of each load instruction also increments the counter T . Also,

the shadow memory for each byte of the original program

is extended to hold the counter T (in addition to the 32-bit

calling context handle and the 8-bit old value).

On each detected load redundancy, where Cold = Cnew,

LOADSPY searches the call path from root (main) toward

the leaf (the load instruction) to look for the first loop node

where the Claim 1 is found to be true. Such a loop is the re-

dundancy scope S for the current instance of load redundancy.

Each redundancy instance records the triplet 〈Cold, Cnew,S〉.
If Cold �= Cnew, LOADSPY first finds the lowest common

ancestor (LCA) function or loop enclosing Cold and Cnew,

and then searches their common call path from root (main)

toward the LCA to obtain S based on the Claim 1.

988

Computing the redundancy scope for each redundancy in-

stance introduces heavy runtime overhead. We compute the

redundancy scope for a given calling context pair only a

threshold number of times (one in our experiments), which

is good enough for most programs.

D. Handling Threaded Programs

LOADSPY maintains per-thread data structures: calling con-

text trees, redundancy profiles, T , among others and hence

needs no concurrency control for multi-threaded programs.

The runtime object map is maintained as a lock-free map

allowing concurrent lookups. LOADSPY detects only intra-

thread redundancy and ignores inter-thread redundancy, if any.

E. Reducing Profiling Overhead

LOADSPY can introduce relatively high runtime overhead,

∼40-150×. LOADSPY adopts a bursty sampling mecha-

nism to control its overhead [67]. Bursty sampling involves

continuous monitoring for a certain number of instructions

(WINDOW_ENABLE) followed by not monitoring for a certain

(larger) number of instructions (WINDOW_DISABLE) and

repeating it over time. These two thresholds are tunable. From

our experiments, 1% sampling rate with WINDOW_ENABLE=1

million and WINDOW_DISABLE=99 million yields a good

tradeoff between overhead and accuracy.

F. Discussions

It is worth noting that there is no one-one relationship be-

tween the redundancy fraction and potential performance gains

because of pipelining, caching and prefetching in hardware.

LOADSPY does not distinguish actionable vs. non-actionable

redundancies, which is a topic of our future work.

V. LOADSPY WORKFLOW

LOADSPY consists of three components: a runtime pro-

filer (detailed previously in § IV), an analyzer, and a GUI.

LOADSPY accepts fully optimized binary executables and

collects runtime profiles via its online profiler. The analyzer

and GUI, run in a postmortem fashion, consume the runtime

profiles and associate them with the application source code.

The rest of this section discusses the analyzer and GUI.

A. LOADSPY’s Analyzer

LOADSPY’s analyzer associates the runtime profiles with

source code based on the DWARF [68] information produced

by compilers. As the profiler produces per-thread profiles, the

analyzer needs to coalesce the profiles for the whole execution.

The calling context profiles scale the analysis of program

execution to a large number of cores. The coalescing procedure

follows the rule: two redundancy pairs from different threads

are merged iff they have the same redundant loads in the

same contexts with the same redundancy scope. All the metrics

are also merged to compute unified ones across threads. The

scheme is similar for profiles from different processes.

It is worth noting that the profile coalescing overhead grows

linearly with the number of threads and processes used by the

monitored program. LOADSPY leverages the reduction tree

technique [69] to parallelize the merging process. Typically,

LOADSPY takes less than one minute to produce the aggregate

profiles in all of our case studies.

B. LOADSPY’s GUI

LOADSPY’s GUI inherits the design of an existing Java-

based graphical interface [19], which enables navigating the

calling contexts and the corresponding source code ordered

by the monitored metrics. A top-down view shows a call

path C starting from main to a leaf function with the

breakdown of metrics at each level. Merely attributing a metric

to two independent contexts loses the association between two

related contexts during postmortem inspection. To correlate the

source with the target, LOADSPY allows appending a copy of

the target calling context to the source calling context. For

example, if a load in context main->A->B is redundant with

another load in context main->C->D, LOADSPY constructs

a synthetic calling context: main->A->B->main->C->D.

The redundancy metrics will be attributed to the leaf of this

call chain. These synthetic call chains make it easy to visually

navigate profiles and focus on top redundancy pairs. Figure 2

in § VII-A shows an example of the GUI, and we postpone

the explanation of the GUI details to that section.

VI. EVALUATION

We evaluate LOADSPY on a 12-core Intel Xeon E5-2650

v4 CPU (Broadwell) of 2.20GHz frequency running Linux

4.8.0. The machine has 256GB main memory. We evalu-

ate LOADSPY with well-known benchmarks, such as SPEC

CPU2006 [53], SPEC OMP2012 [70], SPEC CPU2017 [71],

Parsec-2.1 [54], Rodinia-3.1 [55], NERSC-8 [56], and Stamp-

0.9.10 [72], as well as several real-world applications, such as

Apache Avro-1.8.2 [73], Hoard-3.12 [74], MASNUM-2.2 [65],

Shogun-6.0 [75], USQCD Chroma-3.43 [76], Stack RNN [77],

Binutils-2.27 [78], and Kallisto-0.43 [79]. All the programs are

compiled with gcc-4.8.5 -O3 PGO except Hoard-3.12

and MASNUM-2.2. For Hoard-3.12 we use clang-5.0.0
-O3 PGO and for MASNUM-2.2 we use icc-17.0.4 -O3
PGO. We apply the ref inputs for SPEC CPU2006, OMP2012

and CPU2017 benchmarks, the native inputs for Parsec-2.1

benchmarks, and the default inputs released with the remaining

benchmarks and applications if not specified. We run all the

parallel programs with four threads with simultaneous multi-

threading (SMT) disabled.

In the rest of this section, we first show the fraction

of temporal and spatial redundancies obtained from SPEC

CPU2006. We then evaluate the overhead of LOADSPY with

bursty sampling enabled. We exclude three benchmarks—

gobmk, sjeng, and xalancbmk—from monitoring because they

have deep call recursion causing LOADSPY to run out of

memory. We post the evaluation on the accuracy of LOADSPY

with bursty sampling enabled on arXiv [80].

a) Load redundancy in macro benchmarks: Figure 1

shows the fraction of temporal and spatial load redundan-

cies on SPEC CPU2006. We can see (1) load redundancy,

especially the temporal one, pervasively exists and (2) integer

989

SPEC CPU2006 INT SPEC CPU2006 FP

Re
du

nd
an

cy
 (%

)
0

25
50

75
10

0

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf
hm

m
er

lib
qu

an
tu

m
h2

64
re

f
om

ne
tp

p
as

ta
r

bw
av

es
ga

m
es

s
m

ilc
ze

us
m

p
gr

om
ac

s
ca

ct
us

AD
M

le
sl

ie
3d

na
m

ed
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

G
em

sF
DT

D
to

nt
o

lb
m w
rf

sp
hi

nx
3

G
eo

M
ea

n

Precise Redundancy Approximate Redundancy

(a) Temporal redundancies.

SPEC CPU2006 INT SPEC CPU2006 FP

Re
du

nd
an

cy
 (%

)
0

15
30

45
60

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf
hm

m
er

lib
qu

an
tu

m
h2

64
re

f
om

ne
tp

p
as

ta
r

bw
av

es
ga

m
es

s
m

ilc
ze

us
m

p
gr

om
ac

s
ca

ct
us

AD
M

le
sl

ie
3d

na
m

ed
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

G
em

sF
DT

D
to

nt
o

lb
m w
rf

sp
hi

nx
3

G
eo

M
ea

n

Precise Redundancy Approximate Redundancy

(b) Spatial redundancies.

Fig. 1: Fraction of temporal and spatial load redundancies on SPEC CPU2006.

Benchmarks
Detecting Temporal Redundancy Detecting Spatial Redundancy

Runtime Slowdown Memory Bloat Runtime Slowdown Memory Bloat

perlbench 38× 11× 51× 7×
bzip2 13× 2× 13× 1.09×
gcc 19× 26× 19× 25×
mcf 6× 14× 6× 1.04×

hmmer 12× 35× 11× 20×
libquantum 12× 18× 13× 2×

h264ref 21× 20× 21× 2×
omnetpp 10× 16× 14× 25×

astar 11× 13× 11× 18×
bwaves 17× 14× 15× 1.16×
gamess 24× 25× 24× 24×

milc 4× 10× 4× 1.18×
zeusmp 8× 14× 7× 1.42×
gromacs 10× 23× 9× 15×

cactusADM 7× 10× 7× 1.36×
leslie3d 9× 10× 8× 2×
named 10× 11× 10× 9×
dealII 21× 30× 22× 19×
soplex 13× 13× 13× 2×
povray 29× 216× 28× 70×
calculix 21× 18× 20× 19×

GemsFDTD 8× 14× 8× 1.42×
tonto 22× 49× 24× 30×
lbm 4× 14× 3× 1.15×
wrf 15× 10× 16× 3×

sphinx3 13× 16× 13× 7×
Median 12.5× 14× 13× 5×

GeoMean 13× 17× 13× 5×

TABLE I: LOADSPY’s runtime slowdown and memory bloat over
native execution on SPEC CPU2006.

benchmarks show a high proportion of precise redundant loads

whereas floating-point benchmarks show a high proportion of

approximate redundant loads, as expected.

b) Overhead: Table I shows the runtime slowdown and

memory bloat of LOADSPY on SPEC CPU2006. The runtime

slowdown (memory bloat) is measured as the ratio of the

runtime (peak memory usage) of a benchmark with LOADSPY

enabled to the runtime (peak memory usage) of its native

execution. The geo-means of runtime slowdown for detecting

temporal and spatial redundancies are both 13×, and the geo-

means of memory bloat for detecting temporal and spatial

redundancies are 17× and 5×, respectively. A few benchmarks

such as tonto and povray show excessive memory bloat

due to the following reasons: (1) tonto has a deep call stack,

which demands excessive space to maintain its calling context

tree and (2) povray has a small (∼6MB) memory footprint,

whereas some preallocated data structures in LOADSPY over-

shadow this baseline memory footprint.

VII. CASE STUDIES

We evaluate the load redundancies found in some bench-

marks and real-world applications. Table II summarizes the

inefficiencies found and the speedups obtained by eliminat-

ing them. We quantify the performance of all programs in

execution time except Hoard in throughput. In the rest of

this section, we exhaustively analyze the performance bugs

involved in Apache Avro-1.8.2 and MASNUM-2.2. We detail

other newfound performance bugs on arXiv [80].

A. Apache Avro-1.8.2

Avro [73] is a remote procedure call (RPC) and data serial-

ization processing system. We apply LOADSPY to evaluate

the C++ version of Avro with benchmarks developed by

Sorokin [81]. LOADSPY reports a temporal redundancy frac-

tion Rprecise
prog of 79% for the entire program. Figure 2 shows

the full calling contexts of the top redundancy pair visualized

through LOADSPY’s GUI. LOADSPY’s GUI consists of three

panes: the top pane shows the program source code, the bottom

left pane shows the full calling contexts of each redundancy

pair, and the bottom right pane shows the metrics associated

with each redundancy pair. In this figure, the GUI shows two

metrics: the number of redundant loads for a given redundancy

pair and percentage of redundant instances for a given pair,

which if 100%, means every instance of this pair is redundant.

From the figure, we can see that the redundant loads

in function doEncodeLong account for 25% of the total

redundant loads in the program. Moreover, all instances of this

pair are redundant. The redundancy scope of this pair is the

loop at lines 229-233 in the file Specific.hh enclosing the

call site of function encode. Function encode is the caller

of function doEncodeLong. With further analysis, we find

that the epilog of function doEncodeLong consistently pops

the same values from the same stack location to restore the

register values. To eliminate redundant loads in the function

epilog, we inline doEncodeLong into its caller. LOADSPY

further identifies another problematic function (not shown)

and guides the same inlining optimization. Together, these

optimizations eliminate 31% of the memory loads and 37%

of the redundant memory loads, yielding a 1.19× speedup for

the whole program.

B. MASNUM-2.2

MASNUM [65], one of the 2016 ACM Gordon Bell Prize

finalists, forecasts ocean surface waves and climate change.

It is written in Fortran and parallelized with MPI. LOADSPY

identifies 91% of memory loads are redundant, of which 15%

are attributed to the array x at line 6 on the left of Listing 9.

LOADSPY also pinpoints the redundancy scope as the outer-

most loop at line 1. We find that the innermost loop (line 5)

performs a linear search over the non-decreasing array x for a

given input xx. With multiple iterations, elements of array x

990

Program Information LOADSPY Optimization
Programs Problematic Code Redundancy Types Inefficiencies Approaches WS∗

M
ac

ro
B

en
ch

m
ar

k
s

359.botsspar sparselu.c:loop(191) Temporal Inefficient register usage Scalar replacement 1.77×
453.povray csg.cpp(250) Temporal Missing inline substitution Function inlining 1.05×
464.h264ref mv-search.c:loop(394) Temporal Missing inline substitution Function inlining 1.28×
�470.lbm lbm.c:LBM performStreamCollide Spatial Redundant computation Approximate computing 1.25×

�538.imagick r morphology.c:loop(2982) Spatial Redundant computation Conditional computation 1.25×
�backprop backprop.c:loop(322) Spatial Input-sensitive redundancy Conditional computation 1.13×
�hotspot3D 3D.c:loop(98, 166) Temporal Inefficient register usage Scalar replacement 1.13×
�lavaMD kernel cpu.c(175) Temporal Redundant function calls Reusing the previous result 1.39×
�srad v1 main.c:loop(256) Temporal Inefficient register usage Scalar replacement 1.11×
�srad v2 srad.cpp:loop(131) Temporal Inefficient register usage Scalar replacement 1.12×

�particlefilter ex particle OPENMP seq.c:findIndex Temporal Linear search Binary search 9.8×
vacation client.c:loop(198) Temporal Redundant function calls Reusing the previous result 1.23×
dedup hashtable.c:hashtable search Temporal Poor hashing Reducing hash collisions 1.11×

msgrate msgrate.c:cache invalidate Temporal Missing constant propagation Copy propagation 3.03×

R
ea

l
A

p
p

li
ca

ti
o

n
s

�Apache Avro-1.8.2 Specific.hh(110, 117) Temporal Missing inline substitution Function inlining 1.19×
�Hoard-3.12 libhoard.cpp:xxmalloc Temporal Redundant computation Reusing the previous result 1.14×

�MASNUM-2.2 propagat.inc:loop(130, 140) Temporal Linear search Locality-friendly search 1.79×
�USQCD Chroma-3.43 qdp random.h(56) Temporal Missing inline substitution Function inlining 1.06×

�Shogun-6.0
DenseFeatures.cpp(505)

Distance.cpp(185)
Temporal Missing inline substitution Function inlining 1.06×

�Stack RNN StackRNN.h:loop(350, 355, 363, 367)
Temporal

Spatial
Poor choice of algorithm
Redundant computation

Loop fusion
Conditional computation

1.09×
Kallisto-0.43 KmerHashTable.h(131) Temporal Poor hashing Reducing hash collisions 4.1×
Binutils-2.27 dwarf2.c:loop(2166) Temporal Linear search Binary search 3.29×

�: newfound performance bugs via LOADSPY.

WS∗: whole-program speedup after problem elimination.

TABLE II: Overview of performance improvement guided by LOADSPY.

Fig. 2: The top redundancy pair in Avro with full calling contexts
reported by LOADSPY. Along the calling contexts shown in the
bottom left pane, a procedure name following a symbol [I] means
it is inlined. We can see that most procedures on the path are inlined,
except doEncodeLong. Many redundant loads are from calling
doEncodeLong, which can be removed by function inlining.

are frequently loaded from memory for comparison, leading to

the redundancy. Changing the linear search to a binary search

reduces redundant loads and yields a 1.32× speedup for the

entire program. It is worth noting that the binary search still

incurs high load redundancy fraction because of the intensive

search requests in the program. To further improve the search

algorithm, we analyze the values of xx across iterations. We

find that xx has good value locality, that is, the values are

similar in adjacent iterations of the outermost loop. Thus,

we replace the binary search with a locality-friendly search.

We memoize the location index iii when the current search

finishes; in the next search, we begin at the recorded iii and

alternate the linear search in both directions to the array start

and end. This optimization eliminates 33% of the memory

loads and 36% of the redundant memory loads, yielding a

1.79× speedup for the entire program.

VIII. THREATS TO VALIDITY

The threats mainly exist in applying LOADSPY for code

optimization. The same optimization for one application may

show different speedups on different computer architectures.

A given load redundancy fraction may not help estimate the

potential speedup. Some optimizations are input-specific, and

a different profile may demand a different optimization. Based

on the reported inefficiencies, programmers need to devise an

optimization that is safe in any execution.

IX. CONCLUSIONS

In this paper, we presented a study of identifying program

inefficiencies by focusing on whole-program load redundancy.

We demonstrate that redundant load operations are often a

symptom of various inefficiencies arising from inputs, subopti-

mal data structure and algorithm choices, and missed compiler

optimizations. To pinpoint these inefficiencies in complex soft-

ware code bases, we have developed LOADSPY, a fine-grained

profiler that profiles load redundancy. LOADSPY toolchain

provides valuable guidance to developers for code tuning—

calling contexts of the two parties involved in a redundancy,

narrowed-down redundancy scopes to focus on optimization,

metrics to understand relative significance of redundancy, and

a GUI for the source code attribution. We evaluate LOADSPY

using several benchmarks and real-world applications. Guided

by LOADSPY we are able to optimize prior-known and new

inefficiencies in several programs. Eliminating temporal and

spatial load redundancies resulted in nontrivial speedups.

ACKNOWLEDGMENT

We thank reviewers for their valuable comments. This work

is supported by Google Faculty Research Award and National

Natural Science Foundation of China (No. 61502019).

991

REFERENCES

[1] I. Molyneaux, The Art of Application Performance Testing: Help for
Programmers and Quality Assurance, 1st ed. O’Reilly Media, Inc.,
2009.

[2] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, 2nd ed. USA: Addison-Wesley Publishing Company, 2010.

[3] J. A. Butts and G. Sohi, “Dynamic Dead-instruction Detection and
Elimination,” in Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, 2002, pp. 199–210.

[4] J. S. Seng and D. M. Tullsen, “Architecture-level power optimization—
what are the limits?” J. Instruction-Level Parallelism, vol. 7, 2005.

[5] S. Wen, X. Liu, and M. Chabbi, “Runtime Value Numbering: A Profiling
Technique to Pinpoint Redundant Computations,” in Proceedings of the
2015 International Conference on Parallel Architecture and Compilation
(PACT), ser. PACT ’15. Washington, DC, USA: IEEE Computer
Society, 2015, pp. 254–265.

[6] M. Chabbi and J. Mellor-Crummey, “DeadSpy: A Tool to Pinpoint
Program Inefficiencies,” in Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization, ser. CGO ’12. New
York, NY, USA: ACM, 2012, pp. 124–134.

[7] K. M. Lepak and M. H. Lipasti, “On the Value Locality of Store Instruc-
tions,” in Proceedings of 27th International Symposium on Computer
Architecture (IEEE Cat. No.RS00201), Jun 2000, pp. 182–191.

[8] X. Liu and J. Mellor-Crummey, “Pinpointing data locality bottlenecks
with low overhead,” in 2013 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), April 2013, pp.
183–193.

[9] G. Marin and J. Mellor-Crummey, “Pinpointing and Exploiting Oppor-
tunities for Enhancing Data Reuse,” in IEEE Intl. Symposium on Perfor-
mance Analysis of Systems and Software, ser. ISPASS ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 115–126.

[10] S. Wen, M. Chabbi, and X. Liu, “Redspy: Exploring value local-
ity in software,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’17. New York, NY, USA: ACM,
2017, pp. 47–61.

[11] M. Chabbi, W. Lavrijsen, W. de Jong, K. Sen, J. Mellor-Crummey,
and C. Iancu, “Barrier Elision for Production Parallel Programs,” in
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP 2015. New York, NY,
USA: ACM, 2015, pp. 109–119.

[12] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield, “Analyz-
ing Lock Contention in Multithreaded Applications,” SIGPLAN Not.,
vol. 45, no. 5, pp. 269–280, Jan. 2010.

[13] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “Eliminating Redundan-
cies in Sum-of-product Array Computations,” in Proceedings of the 15th
International Conference on Supercomputing, ser. ICS ’01. New York,
NY, USA: ACM, 2001, pp. 65–77.

[14] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global Value
Numbers and Redundant Computations,” in Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1988, pp. 12–27.

[15] M. N. Wegman and F. K. Zadeck, “Constant Propagation with Condi-
tional Branches,” ACM Trans. Program. Lang. Syst., vol. 13, no. 2, pp.
181–210, Apr 1991.

[16] M. F. Fernández, “Simple and Effective Link-time Optimization of
Modula-3 Programs,” in Proceedings of the ACM SIGPLAN 1995
Conference on Programming Language Design and Implementation, ser.
PLDI ’95. New York, NY, USA: ACM, 1995, pp. 103–115.

[17] T. Johnson, M. Amini, and X. D. Li, “Thinlto: Scalable and incremental
lto,” in Proceedings of the 2017 International Symposium on Code
Generation and Optimization, ser. CGO ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 111–121.

[18] A. Srivastava and D. W. Wall, “A practical system for intermodule code
optimization at link-time,” Journal of Programming Languages, vol. 1,
no. 1, pp. 1–18, Dec. 1992.

[19] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for Performance
Analysis of Optimized Parallel Programs,” Concurrency Computation
: Practice Expererience, vol. 22, no. 6, pp. 685–701, Apr 2010.

[20] “Intel VTune,” https://software.intel.com/en-us/intel-vtune-amplifier-xe,
2018.

[21] Linux, “Linux perf tool,” https://perf.wiki.kernel.org/index.php/Main
Page, 2015.

[22] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call Graph
Execution Profiler,” in Proceedings of the 1982 SIGPLAN Symposium
on Compiler Construction, ser. SIGPLAN ’82. New York, NY, USA:
ACM, 1982, pp. 120–126.

[23] J. Levon et al., “OProfile,” http://oprofile.sourceforge.net, 2017.
[24] L. DeRose, B. Homer, D. Johnson, S. Kaufmann, and H. Poxon, “Cray

performance analysis tools,” in Tools for High Performance Computing.
Springer Berlin Heidelberg, 2008, pp. 191–199.

[25] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting per-
formance problems via similar memory-access patterns,” in 2013 35th
International Conference on Software Engineering (ICSE), May 2013,
pp. 562–571.

[26] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasi-
lache, “Graphite: Polyhedral analyses and optimizations for GCC,” in
Proceedings of the 2006 GCC Developers Summit, 2006, p. 2006.

[27] K. Cooper, J. Eckhardt, and K. Kennedy, “Redundancy elimination
revisited,” in Proceedings of the 17th International Conference on
Parallel architectures and compilation techniques, 2008, pp. 12–21.

[28] Y. Luo and G. Tan, “Optimizing Stencil Code via Locality of Computa-
tion,” in Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation, 2014, pp. 477–478.

[29] R. Hundt, E. Raman, M. Thuresson, and N. Vachharajani, “MAO –
An Extensible Micro-architectural Optimizer,” in Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 1–10.

[30] Y. Ding and X. Shen, “Glore: Generalized loop redundancy elimination
upon ler-notation,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
pp. 74:1–74:28, Oct. 2017.

[31] Y. Ding, L. Ning, H. Guan, and X. Shen, “Generalizations of the theory
and deployment of triangular inequality for compiler-based strength
reduction,” in Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2017.
New York, NY, USA: ACM, 2017, pp. 33–48.

[32] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and
Load Value Prediction,” in Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS VII. New York, NY, USA: ACM,
1996, pp. 138–147.

[33] M. H. Lipasti and J. P. Shen, “Exceeding the Dataflow Limit via Value
Prediction,” in Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, ser. MICRO 29. Washington, DC,
USA: IEEE Computer Society, 1996, pp. 226–237.

[34] K. M. Lepak and M. H. Lipasti, “Silent Stores for Free,” in Proceedings
of the 33rd Annual ACM/IEEE International Symposium on Microarchi-
tecture, ser. MICRO 33. New York, NY, USA: ACM, 2000, pp. 22–31.

[35] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 127–139.

[36] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppel-
ganger: A Cache for Approximate Computing,” in Proceedings of the
48th International Symposium on Microarchitecture, ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 50–61.

[37] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh,
O. Mutlu, and T. C. Mowry, “RFVP: Rollback-free Value Prediction
with Safe-to-approximate Loads,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 12, no. 4, p. 62, 2016.

[38] B. Calder, P. Feller, and A. Eustace, “Value profiling,” in Proceedings of
the 30th Annual ACM/IEEE International Symposium on Microarchitec-
ture, ser. MICRO 30. Washington, DC, USA: IEEE Computer Society,
1997, pp. 259–269.

[39] ——, “Value Profiling and Optimization,” Journal of Instruction Level
Parallelism, vol. 1, 1999.

[40] P. T. Feller, “Value Profiling for Instructions and Memory Locations,”
Master dissertation, 1998.

[41] S. A. Watterson and S. K. Debray, “Goal-Directed Value Profiling,”
in Proceedings of the 10th International Conference on Compiler
Construction, ser. CC ’01. London, UK, UK: Springer-Verlag, 2001,
pp. 319–333.

992

[42] M. Burrows, U. Erlingsson, S.-T. A. Leung, M. T. Vandevoorde, C. A.
Waldspurger, K. Walker, and W. E. Weihl, “Efficient and Flexible
Value Sampling,” in Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS IX. New York, NY, USA: ACM, 2000, pp.
160–167.

[43] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,
S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and
W. E. Weihl, “Continuous Profiling: Where Have All the Cycles Gone?”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 357–390, Nov. 1997.

[44] S. Wen, X. Liu, J. Byrne, and M. Chabbi, “Watching for software inef-
ficiencies with witch,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18. New York, NY, USA: ACM,
2018, pp. 332–347.

[45] R. Muth, S. A. Watterson, and S. K. Debray, “Code Specialization Based
on Value Profiles,” in Proceedings of the 7th International Symposium
on Static Analysis, ser. SAS ’00. London, UK, UK: Springer-Verlag,
2000, pp. 340–359.

[46] T. Oh, H. Kim, N. P. Johnson, J. W. Lee, and D. I. August, “Practi-
cal Automatic Loop Specialization,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13. New York, NY,
USA: ACM, 2013, pp. 419–430.

[47] E.-Y. Chung, L. Benini, and G. D. Micheli, “Energy Efficient Source
Code Transformation based on Value Profiling,” in PROC. INTERNA-
TIONAL WORKSHOP ON COMPILERS AND OPERATING SYSTEMS
FOR LOW POWER, 2000.

[48] T. Kamio and H. Masahura, “A Value Profiler for Assisting Object-
Oriented Program Specialization,” in Proceedings of Workshop on New
Approaches to Software Construction, 2004.

[49] S. Henry, H. Bolloré, and E. Oseret, “Towards the Generalization of
Value Profiling for High-Performance Application Optimization,” http:
//sylvain-henry.info/home/files/papers/shenry 2015 vprof.pdf, 2015.

[50] L. Della Toffola, M. Pradel, and T. R. Gross, “Performance problems
you can fix: A dynamic analysis of memoization opportunities,” in
Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
ser. OOPSLA 2015. New York, NY, USA: ACM, 2015, pp. 607–622.

[51] R. Padhye and K. Sen, “Travioli: A dynamic analysis for detecting data-
structure traversals,” in Proceedings of the 39th International Conference
on Software Engineering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE
Press, 2017, pp. 473–483.

[52] L. Song and S. Lu, “Performance diagnosis for inefficient loops,” in Pro-
ceedings of the 39th International Conference on Software Engineering,
ser. ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 370–380.

[53] SPEC Corporation, “SPEC CPU2006 benchmark suite,” http://www.
spec.org/cpu2006, 2007, 3 November 2007.

[54] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[55] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), Oct 2009, pp. 44–54.

[56] NERSC, “NERSC-8 / Trinity Benchmarks,” http://www.nersc.gov/
users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-
rfp/nersc-8-trinity-benchmarks, 2016.

[57] GCC Wiki, “Graphite: Gimple Represented as Polyhedra,” https://gcc.
gnu.org/wiki/Graphite, 2015.

[58] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 75–.

[59] Intel Corp., “Intel C++ Compilers,” https://software.intel.com/en-us/c-
compilers, 2017.

[60] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI ’05. New York, NY, USA: ACM, 2005,
pp. 190–200.

[61] M. Chabbi, X. Liu, and J. Mellor-Crummey, “Call paths for pin tools,”
in Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’14. New York, NY, USA:
ACM, 2014, pp. 76:76–76:86.

[62] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” in Proceedings of the
ACM SIGPLAN 1997 Conference on Programming Language Design
and Implementation, ser. PLDI ’97. New York, NY, USA: ACM, 1997,
pp. 85–96.

[63] X. Liu and J. Mellor-Crummey, “A data-centric profiler for parallel
programs,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’13.
New York, NY, USA: ACM, 2013, pp. 28:1–28:12.

[64] L. Torczon and K. Cooper, Engineering A Compiler, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[65] F. Qiao, W. Zhao, X. Yin, X. Huang, X. Liu, Q. Shu, G. Wang,
Z. Song, X. Li, H. Liu, G. Yang, and Y. Yuan, “A highly effective
global surface wave numerical simulation with ultra-high resolution,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 5:1–5:11.

[66] P. Havlak, “Nesting of reducible and irreducible loops,” ACM TOPLAS,
vol. 19, no. 4, pp. 557–567, 1997.

[67] Y. Zhong and W. Chang, “Sampling-based program locality approxima-
tion,” in Proceedings of the 7th International Symposium on Memory
Management, ser. ISMM ’08. New York, NY, USA: ACM, 2008, pp.
91–100.

[68] “The DWARF Debugging Standard,” http://www.dwarfstd.org, 2012.
[69] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable identi-

fication of load imbalance in parallel executions using call path profiles,”
in Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
1–11.

[70] SPEC Corporation, “SPEC OMP2012 benchmark suite,” https://www.
spec.org/omp2012/, 2015, may 2015.

[71] ——, “SPEC CPU2017 benchmark suite,” http://www.spec.org/cpu2017,
2017, november 29 2017.

[72] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford
transactional applications for multi-processing,” in 2008 IEEE Interna-
tional Symposium on Workload Characterization, Sept 2008, pp. 35–46.

[73] Apache Software Foundation, “Apache avro,” https://avro.apache.org,
2017, 21 February 2018.

[74] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard:
A scalable memory allocator for multithreaded applications,” in Pro-
ceedings of the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS IX.
New York, NY, USA: ACM, 2000, pp. 117–128.

[75] S. Sonnenburg, H. Strathmann, S. Lisitsyn, V. Gal, F. J. I. Garca,
W. Lin, S. De, C. Zhang, frx, tklein23, E. Andreev, JonasBehr, sploving,
P. Mazumdar, C. Widmer, P. D. . Zora, S. Mahindre, A. Kislay,
K. Hughes, R. Votyakov, khalednasr, S. Sharma, A. Novik, A. Panda,
E. Anagnostopoulos, L. Pang, A. Binder, serialhex, E. Srig, and B. Esser,
“shogun-toolbox/shogun: Shogun 6.0.0 - Baba Nobuharu,” Apr. 2017.

[76] R. G. Edwards and B. Joo, “The chroma software system for lattice
qcd,” Nucl. Phys. Proc. Suppl., vol. 140, p. 832, 2005.

[77] A. Joulin and T. Mikolov, “Inferring Algorithmic Patterns with Stack-
Augmented Recurrent Nets,” ArXiv e-prints, Mar. 2015.

[78] GNU, “GNU Binutils,” https://www.gnu.org/software/binutils/, 2014,
september 2014.

[79] P. Melsted, H. Pimentel, and L. Pachter, “Near-optimal RNA-Seq
quantification,” https://github.com/makaho/kallisto, 2014.

[80] P. Su, S. Wen, H. Yang, M. Chabbi, and X. Liu, “Redundant Loads: A
Software Inefficiency Indicator,” ArXiv e-prints, Feb. 2019. [Online].
Available: https://arxiv.org/abs/1902.05462

[81] K. Sorokin, “Benchmark comparing various data serialization libraries
(thrift, protobuf etc.) for C++,” https://github.com/thekvs/cpp-serializers,
2014.

993

