Lightweight Hardware Transactional Memory
Profiling

Qingsen Wang, Pengfei Su
College of William & Mary
{qwang06,psu}@email.wm.edu

Abstract

Programs that use hardware transactional memory (HTM)
demand sophisticated performance analysis tools when they
suffer from performance losses. We have developed TxSam-
pPLER—a lightweight profiler for programs that use HTM.
TxSAMPLER measures performance via sampling and pro-
vides a structured performance analysis to guide intuitive
optimization with a novel decision-tree model. TXSAMPLER
computes metrics that drive the investigation process in a
systematic way. It not only pinpoints hot transactions with
time quantification of transactional and fallback paths, but
also identifies causes of transaction aborts such as data con-
tention, capacity overflow, false sharing, and problematic
instructions. TxSAMPLER associates metrics with full call
paths that are even deeply embedded inside transactions and
maps them to the program’s source code. Our evaluation
of more than 30 HTM benchmarks and applications shows
that TXSAMPLER incurs ~4% runtime overhead and negligi-
ble memory overhead for its insightful analyses. Guided by
TXSAMPLER, we are able to optimize several HTM programs
and obtain nontrivial speedups.

CCS Concepts +General and reference — Performance;
Cross-computing tools and techniques; « Software and
its engineering — Software performance; Software li-
braries and repositories;

Keywords Hardware Transactional Memory, profiling, op-
timization, HTM benchmark suite

1 Introduction

Transactional memory (TM) [25] is a well-known technique
for achieving optimistic concurrency in shared-memory par-
allel programs. TM provides simple interfaces to specify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6225-2/19/02.
https://doi.org/10.1145/3293883.3295728

Milind Chabbi
Scalable Machines Research
milind@ScalableMachines.org

186

Xu Liu
College of William & Mary
xI10@cs.wm.edu

critical sections; TM optimistically and speculatively exe-
cutes critical sections, and guarantees correctness by rolling
back transactions in the event of conflicts. The Draft C++
TM Specification [5] and its implementation in recent GCC
compiler facilitate the usage of TM in parallel programs.
The underlying TM runtime system can be implemented in
either software (STM) or hardware (HTM). HTM exploits
the processor’s cache coherence protocol to detect access
conflicts. Early HTM implementations appeared in Azul [12]
and Rock [15] processors. Intel Haswell and its successors,
and IBM POWERS, Blue Gene/Q and zEnterprise EC12 [26]
processors now support HTM. HTM is also proposed in
emerging GPGPUs [18]. In this paper, we target the pro-
grams running with Intel HTM implementation, known as
transactional synchronization extensions (TSX) [31].

Transactions support speculative execution: if two trans-
actions have no conflicting memory accesses [33], they can
execute concurrently; otherwise, one is aborted. Besides con-
flict aborts, the memory footprint in a transaction larger
than a predetermined cache capacity (e.g., L1 cache) can also
cause TSX transaction aborts. TSX treats both the conflict
and capacity aborts as asynchronous aborts. Unfriendly in-
structions and events, such as system calls and page faults
also abort TSX transactions, known as synchronous aborts.

As HTM gains wider adoption, it demands a comprehen-
sive set of tools to measure and analyze how applications
behave on a given HTM architecture. Application developers
need easy-to-use tools to understand and tune their applica-
tions and algorithms for target architectures.

For any measurement-based analysis, two techniques
are commonly used: instrumentation and sampling.
Instrumentation-based tools add extra code at either source
code or binary level to collect measurements; the overhead
is proportional to the frequency of instrumentation
invocation. Instrumentation-based tools enjoy the benefits
of microscopic observation but incur high runtime overhead
(several times slowdown). Sampling-based tools sample
events (e.g., CPU cycles), and the overhead is proportional
to the sampling frequency or the rate of the occurrence
of the sampled event. Sampling-based tools introduce low
runtime overhead but often fail to offer microscopic details.

Tools to diagnose HTM performance are still in their in-
fancy. Early efforts, such as TSXProf [39], resort to the instru-
mentation and trace-replay schemes. TSXProf instruments

https://doi.org/10.1145/3293883.3295728
https://www.acm.org/publications/policies/artifact-review-badging/#replicated
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#reusable

1
2
3
4

5
6
7

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

void AQO{ CQO; } 1// parallel loop
void BOO{ CQO; 3} 2 for(int i=0; i<n; i++){
int main(void) { 3 TM_BEGIN();
// parallel section 4 // low contention
TM_BEGIN() ; 5 alil++;
AQ; BQO; 6 TM_END () ;
TM_END(); } 7%
Listing 1. Example of Listing 2. Example of small

functions in transactions. transactions inside a loop.

transactional regions, and logs them with timestamp coun-
ters. Later, in a postmortem pass, it replays transactions in
an STM system. Instrumenting HTM requires intercepting
each transaction’s start and end. Logging each transaction in-
stance, especially the small ones embedded in deeply nested
loop incurs high overheads [32]. Moreover, instrumenting
transactional instructions perturbs the transaction itself. For
example, the instrumented code may increase memory foot-
print, leading to capacity aborts. Similarly, recording transac-
tional details in a shared memory location can cause conflict
aborts. Record-and-replay incurs non-trivial overhead (~3X)
in the replay stage to obtain the full contexts of transactions.
Additionally, STM replay is an approximation of HTM, not
an authentic reflection of execution on native hardware.

To reduce the overhead of software instrumentation, Intel
processors introduce processor tracing (PT) hardware [24]
that gleans a complete control flow of a program execution,
including the ones in transactions, and outputs the trace in
compressed binary packets. Such control flow trace provides
insights inside transactions. PT incurs moderate runtime
overhead, ~ 20% in our experiments for collecting the trace.
However, decoding the trace packets is costly, impeding PT
from online analysis [1]. Moreover, our experiments show
that PT produces 30-80MB packets per thread per second,
which incurs high space overhead.

To avoid fine-grained monitoring via instrumentation or
Intel PT, tools such as Perf [35] and VTune [27] leverage
event-based sampling of transactions via performance moni-
toring units (PMU). PMU sampling incurs low overhead but
is fraught with problems in measuring HTM execution. First,
PMU events trigger processor interrupts when performance
counters overflow; interrupts abort transactions. In such a
situation, these tools cannot distinguish whether a sample is
triggered in the transaction or in its fallback code. Second,
when a transaction aborts, it immediately rolls back to the
beginning of the transaction, making these tools impossible
to get the calling context of the instruction that triggers the
abort, if it appears in a deep call chain inside the transaction.
For example, if an abort happens inside function C in Listing 1,
these tools cannot identify whether it is called from function
A or B. Third, as they do not provide time decomposition of a
transaction, users may miss optimization opportunities due
to large lock waiting time or large overhead time. As shown
in Listing 2, if the transaction shows a high commit rate,
one may miss the optimization opportunity of coalescing

187

Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu

small transactions to reduce the overhead of creating and de-
stroying transactions. Finally, as Inte]l TSX monitors conflicts
at the cache line level, it is important to avoid contention
to reduce unnecessary conflict aborts. Without a detailed
memory address tracing, it is challenging for these tools to
identify contention due to true or false sharing.

In this paper, we take up the challenge of sampling-based
(and hence lightweight) HTM profiling and develop TxSAm-
PLER, a lightweight and multi-scale profiler for hardware
transactional memory. TXSAMPLER utilizes event-based sam-
pling [28] techniques while overcoming the limitations of
PMU HTM sampling. TxSAMPLER eliminates heavyweight
instrumentation of memory loads and stores. Unlike the
record-and-replay approach, TXSAMPLER is a one-pass pro-
filer. As a full-fledged profiler, TxSAMPLER offers a struc-
tured approach to attacking HTM-based code; it provides
a decision-tree style analysis of runtime metrics and offers
rule-of-thumb suggestions for improving performance.

We make the following five contributions in this paper:

e Develop a sampling-based performance tool, TXSAMPLER,
to offer detailed insights of HTM. Its multi-scale analysis
apportions execution time to various transactional com-
ponents and pinpoints causes of HTM aborts.

e Devise a unique solution to the challenges when using
PMUs to monitor transactional execution.

e Provide a structured scheme to attack HTM codes with
performance problems.

e Develop and study a rich set of HTM benchmark suites,
HTMBench, which includes more than 30 programs.

o Demonstrate the effectiveness of TxSAMPLER by optimiz-
ing several HTM applications based on the insights offered
by TXSAMPLER.

TxSampLER works on fully optimized binary executa-
bles, without the need of program recompilation or heavy-
weight binary instrumentation. TXSAMPLER typically in-
curs ~4% runtime overhead and needs less than 5MB mem-
ory per thread to collect its measurement data. Guided
by TXSAMPLER, we can optimize several applications and
benchmarks with problematic HTM usage and obtain up
to 3.78% speedups. TXSAMPLER is available at https://github.
com/ScalableMachinesResearch/TxSampler; HTMBench is
available at https://github.com/ScalableMachinesResearch/
HTMBench.

The remaining paper is organized as follows. Section 2
introduces the background of Intel TSX. Section 3 overviews
the methodology of TxSAMPLER for addressing the profiling
challenges. Section 4 and 5 describe TXSAMPLER’s time and
abort analyses, respectively. Section 6 discusses some imple-
mentation details. Section 7 evaluates TXSAMPLER. Section 8
applies TXSAMPLER on several case studies. Section 9 surveys
existing work and distinguishes our approach. Section 10
shows some limitations of TxSAMPLER and our future work.
Finally, Section 11 presents the conclusions.

https://github.com/ScalableMachinesResearch/TxSampler
https://github.com/ScalableMachinesResearch/TxSampler
https://github.com/ScalableMachinesResearch/HTMBench
https://github.com/ScalableMachinesResearch/HTMBench

TXSAMPLER

2 Background

In this section, we briefly review the programming model
of Intel TSX. Intel TSX provides two mechanisms to utilize
HTM: restricted transactional memory (RTM) and hardware
lock elision (HLE). RTM focuses on the flexible support for
HTM, while HLE aims to make existing lock-based programs
compatible with HTM. This paper focusses on RTM, but all
the techniques can be applied to HLE with trivial extension.

When starting a hardware transaction, the software adds
the memory word associated with the lock to its read set by
reading the lock word, and continues the transaction if the
lock is not held. This transaction may succeed if 1) the lock is
not acquired by another thread and 2) no conflicting memory
accesses happen. Upon an abort, the transaction is rolled back
and TSX hardware reports a status code indicating the abort
reason. The software then determines whether to retry the
transaction. If not to retry, the software falls back to the slow
path, which involves acquiring the global lock, executing the
slow path code, and releasing the lock.

For code maintenance, the transaction (fast) path and the
fallback (slow) path usually share the same user code. Execut-
ing the slow path needs to acquire the lock for correctness,
whereas the fast path waits for the lock to be available before
starting the speculative execution. The RTM runtime system
is typically coded in a library and linked to application exe-
cutables. In the remaining paper, we refer to Intel HTM as
RTM specifically. Moreover, we call the code executed in the
fast HTM path as a transaction, and both an HTM path and
its corresponding fallback path as a critical section.

3 TxSamPLER: Methodology

Since inexperienced users may be overwhelmed by the abun-
dant information (related to time, transaction states and
memory accesses) provided by TXSAMPLER, it employs a
decision tree as shown in Figure 1 to pinpoint bottlenecks.
The decision tree can help users take the most advantage of
TxSAMPLER to find possible optimization opportunities. For
instance, assuming the low abort ratio is benign, one may
lose the optimization opportunities of transaction overhead
in TSX applications Histo (Section 8.3).

TxSaMPLER first quantifies and attributes execution time
to code that belongs to critical sections. If the time spent
inside critical sections is significant, it will be classified into
different components: transactional path, fallback path, lock
waiting and overhead for further analysis (elaborated in Sec-
tion 4). If there are numerous HTM aborts, TXSAMPLER needs
to quantify the penalty of aborts and identify potential causes
of aborts. According to different abort reasons, the decision
tree offers different optimization suggestions. Section 5 de-
tails this abort analysis. TXSAMPLER profiles associate its
metrics with calling contexts even deep in transactions in-
cluding speculatively executed source code regions. Section 6
provides these implementation details.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

« Elide read lock
« Use fine-grained locks to
serialize

Time Analysis === 28 Tor _|"\h 1% overhead
No HTM-related Y
O,
¥

large Ty — High lock waiting |—{

yes —

F->{@ Analyze time

decomposition

* Redesign algorithm
* Shrink transactions
Shared data contention — . spjit transactions

large Ty,

T
:
i large Tyyqie
i

* Relocate data to different

Conflicts caused by cache lines

shared data * Relocate data based on

False sharing | —1 threads

no

[©
Fina a place (function, high conflict

transaction, loop, line, aborts * Redesign algorithm
etc.) with largest @ ® « Split transactions
abort/commit, abort Analyze abort type |----->" Footprint large F->| « Shrink transactions
number, abort weight, T :Iagpr;city « Relocate data to share
Tty Twaie» €tc. ' i
f wait ~_i 'nhigh sync b s cache lines

| aborts

* Move unfriendly
instructions/call out from
transaction

+ Use a friendly equivalent

v
G{Jnfriendly instructions/call inside transaction ->|

Abort Analysis

Figure 1. The decision tree in TxSAMPLER that offers opti-
mization guidance. The red dotted lines and the numbers
show an example usage in our case study, as described in
Section 8.1.

In this section, we highlight the challenges that TxSam-
PLER addresses in leveraging PMU sampling to profile parallel
programs with HTM.

3.1 Challenge I: Handle Aborts due to Interrupts

If a PMU sample occurs when the code is executing a transac-
tion, it results in aborting the transaction and the CPU state
looks as if it was about to execute the first instruction of
the fallback path. A PMU sample will be seen in the fallback
path on two occasions:

1. The application caused an HTM abort and the PMU sam-
ple happened in the fallback path.

2. The PMU counter overflowed in the speculative path,
which resulted in the transactional abort, and hence the
execution was directed into the fallback path.

Distinguishing these two cases is crucial. If the PMU trig-
gers the transaction abort when sampling a precise event [29]
(e.g., CPU cycles, memory loads/stores), PMU records the
precise instruction pointer (IP) at the sample point. However,
developers often share the same code in both transaction and
fallback paths. Thus, only knowing the IP does not distin-
guish whether the sample happened inside the transaction
path or the fallback path.

Solution: We exploit the Last Branch Records (LBR) [29]
feature available in modern Intel CPUs to assist in deter-
mining whether a sample triggers an abort. The LBR is a
circular buffer that contains the most recent N (N is 16
for Haswell/Broadwell, and 32 for Skylake and successors)
history branches (e.g., function calls, conditional and uncon-
ditional jumps, etc.) of the processor. Each entry contains (1)
a (from, to) pair of instruction pointers, (2) an abort bit in-
dicating whether this branch is caused by a transaction abort
and (3) another “in-tsx” bit showing whether the branch is
in HTM or not. Upon each PMU interrupt, we check the

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

ST
Execute one Critical Section (CS) é g iq § é
...//prepare for TX v v
If (try htm) {
wait _until lock free(); v v
...//execute user code in HTM } v | v
else { v v
acquireLock () ; v v
...//execute user code in fallback v v
releaseLock () ;} v v

Figure 2. An example of a critical section with instructions
in different states.

most recent LBR entry, which always records the triggering
interrupt (as shown in Figure 3(b)). If the abort bit of this
branch is set, it indicates this PMU sample occurred while
the CPU was executing inside a transaction. Otherwise, this
sample was taken in the fallback path and did not abort the
transaction.

3.2 Challenge II: Attribute to Components

A PMU sample may happen at any time, either in critical
sections or not. To perform effective time analysis, we clas-
sify PMU samples triggered inside critical sections into four
categories: inside a transaction, inside a fallback path, in
a lock-waiting part, and in a transaction overhead section.
Figure 2 shows an example of a critical section with code in
different states.

Our solution is to expose the RTM runtime library states
to the profiler. The profiler queries these states in each PMU
sample. These states are thread-private, which are elaborated
as follows:

inCS: executing in a critical section.

inHTM: executing in a transaction path.

inFallback: executing in a fallback path.

inLockWaiting: waiting for a global lock to be available
(to start a transaction).

inOverhead: initiating or cleaning up a transaction.

Because these states are thread-private, this bookkeeping
mechanism incurs negligible synchronization overhead to
the RTM library. We encode these state flags into different
bits of a single word for retrieval to minimize the memory
overhead. To extract these state flags, we extend RTM library
to provide a state query function, which can be called at any
time during the program execution. This query function does
not incur extra overhead to the RTM library because it is only
called from profilers, not HTM applications. This simple ex-
tension to the RTM library adds ~20 lines of code and incurs
less than 1% runtime overhead according to our experiments.
Given the simple implementation and low overhead, we hope
to standardize this extension to HTM runtime libraries for
the support of efficient performance measurement analogous
to OpenMP tools interface specifications [16].

Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu

void A () { void D() {
TM_BEGIN; N
B();
cE;; P N Gall R handler 1 0
TM_END; void c(){ 1 CallD 01
! : : D(); 2 CallC 01
int main(void) {
A(); void B() { 3 Breturn 01
return 0; D(); 4 Dreturn 01
} 5 callD 0 1
(a) Source code (c) Calling context 6 CallB 01
. CallA 00

Call stacking unwinding LBR reconstruction

main>A>C>D

(b) LBR entries

Figure 3. Example of constructing a calling context where a
sample occurs at POINT X. Some LBR entries related to RTM
library are omitted.

3.3 Challenge III: Analyze Contention

Memory contention analysis is critical to understand the
root causes of conflict aborts, and it requires a profiler to
identify true or false sharing among threads.

Solution: We utilize th PMU to analyze contention with
negligible overhead by sampling precise events—memory
loads and stores. With these events, PMUs can capture the
effective address of the sampled memory access [30].

Upon each sample, we create a per-byte shadow memory
according to the effective address captured by the PMU to
record the information of the sampled access including (1)
a read-or-write flag, (2) the ID of the thread initiating the
access and (3) the current timestamp obtained from rdtsc in-
struction [3]. Similarly, we also create a per-cacheline shadow
memory derived from the effective address of the sample.

We detect memory contention upon each sample, when
(1) the thread ID of the current sample differs from the ones
retrieved from the per-cacheline shadow memory, (2) at least
one of these recorded flags is a store and (3) the time differ-
ence of the two memory accesses is less than a threshold P.
After identifying the current sample involved in contention,
we further check the per-byte shadow memory related to the
address accessed by the current sample; if the thread ID of
the current sample is different from the one recorded in the
per-byte shadow memory, the contention is due to true shar-
ing; otherwise, the contention is due to false sharing. The
threshold P is set to 100ms based on empirical observations.

3.4 Challenge IV: Attribute to Call Path

The calling context (i.e. call chain) inside a transaction is
unavailable since PMU samples abort transactions and the
signal handler always sees the program context to be at the
beginning of the transaction. We work around this prob-
lem by extracting call and return instructions from the LBR
records and reconstruct the partial call path inside trans-
actions. We configure LBR to collect only recent function
calls and returns at each sample and pair them to extract
function call relationship in all LBR entries. The call path in

TXSAMPLER

a transaction may only be partially constructed depending
on the number of function invocations inside the transaction
and the size of the LBR stack. Additionally, we unwind the
call stack starting from the signal context to determine the
call path leading to the beginning of the transaction. We
concatenate these two call paths to provide more contextual
insights into transactions.

Figure 3 illustrates the idea. A sample occurs at POINT X
in the transaction path. SInce that the call stack unwinding
can only construct the calling context main—A, users cannot
know whether D is called from B or C. Then we examine
the LBR entries that come with the event sample (shown in
Figure 3(b)). The abort and in-tsx columns are two bits
that indicate whether the branch is an abort and whether it
is in transaction respectively. The first LBR entry (LBR[Q]) is
caused by the interrupt and its abort bit is used in determin-
ing the correct path as discussed in Section 3.1. Inspecting
LBR[1] and LBR[2], allows us to construct the path C—D.
If the address of the call C instruction equals to the from
address of LBR Entry 2, C—D must originate from A. Then we
are able to reconstruct the calling context by concatenating
the two call paths as shown in Figure 3(c). If the LBR entries
overflow within a transaction, the concatenation may miss
some call path prefix inside the transaction.

4 TxSAMPLER’s Time Analysis

TxSAMPLER’s time analysis, the first stage in the decision tree
model, provides intuitive analysis for users who do not need
any prior knowledge about the code under optimization. It
avoids using HTM-related metrics but derives timing metrics
that directly quantify the execution performance. TxSam-
PLER answers the following questions in its time analysis.

1. Compared to the entire program, what is the proportion
of CPU cycles consumed in “hot” critical sections?

2. How many cycles are consumed in the transaction, fall-
back, or other components in a given critical section?

3. How to optimize critical sections protected by HTM to
reduce unnecessary CPU cycle consumption?
TxSAMPLER first measures the whole program execution

time, known as work W, in CPU cycles. It then decomposes

W into cycles consumed in critical sections T and outside

critical sections S as shown in Equation 1. Only when T is

large enough (e.g., T/w > 20%) does TxSAMPLER recommend
further analysis on the execution of critical sections. TxSam-

PLER further decomposes T to different critical sections and

identifies the hot ones for optimization. This approach an-

swers Question 1.

W=T+S (1)

TxSAMPLER then investigates hot critical sections that
have a high impact on the entire program performance.
TxSAMPLER continues to decompose T into different states,
as shown in Equation 2. T, is the cycles spent in transaction
paths; Ty, is the cycles in fallback paths; Tyyqi; is the cycles

190

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

in waiting for the global lock; and Ty, is the cycles in other

transaction-related code, such as transaction creation and

cleanup, also known as transaction overhead. This approach

answers Question 2.

T =T+ be + Twait + Ton (2)

With these timing metrics, TXSAMPLER can provide ap-
propriate optimization guidance in the decision tree model
to answer Question 3. If T is small, there is no need to op-
timize transactions since the optimization efforts lead to
little performance gain. If T is large, TXSAMPLER can guide
optimizations according to the four metrics in Equation 2.
o T;y is large = the transactional path accounts for most

execution time. TXSAMPLER usually does not make opti-

mization recommendation.

e Typ is large = most execution time is in the slow fall-
back path due to frequent aborts or long fallback path.
TxSAMPLER recommends applying abort analysis, as de-
scribed in Section 5, to further understand aborts before
optimizing transaction code.

® T\air is large = waiting for the lock consumes most
of the time. The lock is used to serialize transactions that
need to execute in the slow fallback path. TxSAMPLER
recommends relaxing the serialization algorithm to reduce
the lock waiting time, or further applying abort analysis
to explore the possibility of reducing abort rate.

o T,y is large = most time is consumed in initiating
transactions, setting up retry mechanism or cleaning up
transactions. TXSAMPLER suggests merging multiple small
transactions into a larger one to reduce this overhead.

To compute these metrics, TXSAMPLER leverages the tech-
niques described in Section 3.1 and 3.2 to co-design the HTM
runtime library and the profiler. TXSAMPLER accumulates
CPU cycle samples to the appropriate metrics, as shown in
Figure 4. Upon each sample, TXSAMPLER first accumulates
the sample to W. It then queries the state from RTM library
to see whether the sample falls in a critical section. If the sam-
ple falls in a critical section, TXSAMPLER increments metric T
associated with the call path (context) where the sample was
taken; otherwise, TXSAMPLER stops analyzing this sample.
Further attribution inside the critical section is similar but
based on the queried state and LBR.

5 TxSAMPLER’s Abort Analysis

As shown in the decision tree, abort-related metrics are use-
ful when TxSAMPLER’s time analysis shows a large amount
of time spent in fallback paths or lock waiting. TxSAMPLER
also collects abort information from PMUs and computes
penalty and contention metrics for individual transactions.

Penalty metrics The weight captured by PMU quantifies
the penalty of a transaction abort. Usually, a larger weight
means a higher abort cost. TXSAMPLER computes an aver-
age weight per abort w; for each sampled transaction ¢ us-
ing Equation 3, where Y, w; represents the aggregate abort

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

. /* Let ctat be the calling context where the PMU sample occurred */
. /* Always accumulate work */
ctet. W++;
. /* Query the state from the RTM library */
. int state := GetState();
. if IsSampleInCS(state) then
ctxt. T++;
/* Query the abort bit B,port Of the latest entry of LBRs */
if Babort ==1 then
ctxt. T ++;
else if IsSamplelnFallback(state) then
ctxt. Tip++;
else if IsSampleInLockWaiting(state) then
ctxt. Tyait++;
else
ctxt. Top++;
17: end if
18: end if

SREZRE ORI NEL RS

Figure 4. Computing timing metrics upon each sample.

weight of all the sampled transaction aborts of t and }’ s; is
the sum of all the sampled aborts of t.
wy = 2V
2 St
For a transaction with large w, we further decompose its
abort weight according to different abort reasons. TxSam-
PLER computes the ratio of conflict abort weight rconfiic: in
Equation 4, where 3} weonfiic: denotes the aggregate weight
due to conflict aborts of a transaction. Analogously, TXxSam-
PLER also computes reapaciry and Fsynchronous-
2 Weonflict

®)

X 100% (4)

w
The penalty metrics help understand the root causes and

the impacts of transaction aborts, which can guide future
optimization. For example, if w; is large, one may reduce

Feonflict =

the transaction size to avoid high abort penalty. If reonfiice
is high, we can investigate the transactional instructions
pointed by TxSAMPLER to avoid unnecessary conflicts, such
as false sharing. If rsynchronous is high, we may move the
problematic instructions (e.g., system calls) identified by
TxSAMPLER out of the transaction or enable prefetching
when caused by a page fault from a memory access.

Contention metrics Aggregate metrics alone are not
enough to understand the contention across threads. For
instance, a thread may always abort other threads, causing
thread starvation. Therefore, TXSAMPLER records both per-
thread transaction aborts and commits, and plots them in
a histogram across threads. If there exists an imbalanced
distribution of transaction commits or aborts, TXSAMPLER
reports this problematic transaction for investigation. A pos-
sible optimization is to redistribute the work across threads
to balance the transaction execution.

In addition, TXSAMPLER leverages the lightweight analysis
described in Section 3.3 to identify the memory instructions
in transactions that involve true and false sharing.

191

Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu

6 TxSAMPLER Implementation

TxSAMPLER is implemented atop HPCToolkit [4], a state-of-
the-art call path profiler for parallel programs. TxSAMPLER
accepts a compiler-independent, fully optimized executable
binary, which is linked with our customized HTM runtime
library. TxSAMPLER’s data collector monitors the binary exe-
cution and produces profiles during a single execution. Then
TxSAMPLER’s data analyzer post-processes all the profiles:
merging the profiles across different threads, associating
performance data with source code, and computing derived
metrics. Finally, the analyzer records all the insights into
files and passes them to TxSampLER’s GUI for visualization.
In the following, we discuss each TXSAMPLER’s component,
especially its design for low overhead and high scalability.

HTM Runtime Library We adopt the HTM runtime li-
brary from an existing approach [40]. As mentioned in Sec-
tion 3.2, we add 21 lines of code to support TXSAMPLER; 9
of them are used for the state query function, which are
executed only when queried by a profiler. To use this library,
users only need to enclose a critical section with TM_BEGIN
and TM_END.

Online Data Collector TxSAMPLER’s collector uses
LD_PRELOAD to install the necessary code in the address
space of the binary being monitored. Such code utilizes
PAPI-5.5.0 [10] to configure PMUs and sample CPU cycles?,
transaction aborts/commits? and memory accesses® before
the binary executes. TxSAMPLER predefines default sampling
periods for these events: 1 x 107 for CPU cycles, 1 x 10* for
RTM aborts/commits, and 1 X 10* for memory loads/stores.
One can adjust the sampling periods to tune the sampling
rates. Empirically, an appropriate sampling rate that balances
both overhead and accuracy is 50-200 samples per second
per thread. TxSAMPLER also installs an interrupt signal
handler to capture samples. Upon each sample, TXSAMPLER
determines its call path as described in Section 3.4 and
computes runtime metrics. Finally, TxSAMPLER outputs the
profiles into files for further analysis.

Offline Data Analyzer TxSAMPLER’s offline analyzer ag-
gregates all the profiles from different threads and associates
analysis data with source code. It merges metrics associated
with transactions under the same call path. The profile coa-
lescing overhead grows linearly with the number of threads
used by the monitored program. TXSAMPLER leverages the
reduction tree technique [47] applied in HPCToolkit to par-
allelize the merging process. TXSAMPLER requires less than
ten seconds to produce the aggregate profiles for all of our
studied programs. Besides aggregate metrics, TXSAMPLER
also maintains per-thread metrics.

IEvent name: cycles.
2Event name: RTM_RETIRED: ABORTED/COMMIT.
3Event name: MEM_UOPS_RETIRED:ALL_STORES/ALL_LOADS.

TXSAMPLER

GUI TxSaMpLER’s GUI provides a calling context view to
show the full call paths for all sampled transactions in the ag-
gregate profile. From this view, one can quickly identify prob-
lematic transactions. Moreover, the GUI supports plotting
per-thread metrics on any given context across all threads,
making it intuitive to recognize the imbalance of transaction
commits/aborts across threads.

7 Evaluation

We evaluate TXSAMPLER on a 14-core Intel Xeon E7-4830 v4
(Broadwell) processor clocked at 2.0 GHz. The memory hier-
archy includes a private 64KB L1 cache, a private 256KB L2
cache, a shared 35MB L3 cache, and 256GB memory. We adapt
a variety of multi-threaded programs with hardware trans-
actional memory to evaluate TXSAMPLER. These programs
include (1) TM benchmark suites, such as highly optimized
STAMP [40], Lee-TM [6], QuakeTM [19], and RMS-TM [34],
(2) popular multi-threaded benchmark suites, such as PAR-
SEC [9], Parboil [46], NPB [8], CORAL [37], SPLASH2 [45],
Synchrobench [23] and SSCA2.2 [7], and (3) multi-threaded
applications, such as LevelDB [11, 13], BPlusTree [17], Kyoto-
Cabinet [36], BART [49], Berkeley DB [41], Memcached [2]
and PBZip2 [21].

For TM benchmarks, we replace the original soft-
ware transactions with Intel TSX transactions, while we
elide pthread locks or atomics and introduce TSX trans-
actions accordingly for other multithreaded programs.
For programs using pthread conditional variables, we
apply the techniques described in the literature [50]
to avoid using pthread primitives: remove pthread con-
ditional variables (e.g., pthread_cond_broadcast and
pthread_cond_signal) and have threads spin wait for spe-
cial conditions. For all of the code bases, we do not enlarge
or shrink their originally defined critical sections. We only
perform the lock substitution by applying HTM instructions
around the critical sections. All the programs are compiled
with GCC 4.8.5 -03 and run with all 14 cores. Each trans-
action is configured to retry five times before falling to the
slow fallback path; we do not retry transactions with per-
sistent aborts (e.g., unfriendly system calls). We use the sug-
gested native inputs for all benchmarks. For those applica-
tions whose execution time is too short (i.e., less than 30s),
we tune the inputs to make them run long enough in the
native execution.

In the rest of this section, we first evaluate the overhead
of TXSAMPLER, then verify the correctness of TXSAMPLER,
and finally characterize all the programs and summarize the
optimization guided by TXSAMPLER.

7.1 TxSAMPLER’s Overhead.

Figure 5 reports the runtime overhead of TxSAMPLER. We
tune the sampling rate to guarantee that TxSAMPLER collects
more than 50 samples per thread per second. The overhead

192

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Input # | ScatterMode Expected Characteristics
1 Adjacent Rare conflicts, cache prefetch friendly
2 FirstParts High conflicts, cache prefetch friendly
3 Random Rare conflicts, cache prefetch unfriendly

Table 1. Inputs for CLOMP-TM.

is averaged over five of seven executions by excluding the
smallest and largest ones; the error bars show the variation.
TxSAMPLER incurs ~4% runtime overhead on average.

TxSAMPLER requires no specific adaptation to profile short-
running programs. However, the proportion of overhead to
the execution time can increase because of the fixed over-
head of preloading the profiling library and setting up PMUs
becomes nontrivial. For example, water and ocean from
SPLASH originally run less than 0.1s; TXSAMPLER incurs 15X
runtime overhead on average. It is worth noting that the
short-running programs often receive little interest in per-
formance tuning, so our investigated HTM programs have
reasonably long execution time. Furthermore, TXSAMPLER
introduces less than 5MB memory overhead per thread on
average independent of the execution time.

We further use STAMP to evaluate the sensitivity of the
runtime overhead to the number of threads in Figure 6. The
overhead value is averaged across all STAMP benchmarks.
We can see that TxSAMPLER maintains low overhead regard-
less of thread counts.

7.2 TxSAMPLER’s Correctness

We validate the accuracy of TxSAMPLER with a set of mi-
crobenchmarks. These microbenchmarks trigger low, mod-
erate, and high transaction abort ratios due to various abort
reasons, such as true sharing, false sharing, and special in-
structions. We obtain the ground truth from the instrumen-
tation in the HTM runtime library. TXSAMPLER generates
the profiles that exactly match the ground truth.

Moreover, it is critical for TXSAMPLER to correctly reason
about HTM performance behaviors. For this purpose, we
perform a set of controlled experiments on CLOMP-TM [43],
for which we know what to expect in our profiles. CLOMP-
TM provides two configurations (small or large transactions),
together with three inputs to trigger different memory access
patterns and various degrees of memory conflicts. Table 1
shows the three inputs with different characteristics, each of
which runs with two configurations: small transactions and
large transactions. With this benchmark, one can (1) com-
pare the behaviors of the same configuration but different
inputs, or (2) compare the performance of different configu-
rations with the same input. Figure 7 shows the performance
data collected by TxSaMPLER for CLOMP-TM running with
14 threads, which can correctly explain the performance
behavior of CLOMP-TM.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu

HEl native

21 with sampling

f
d

N N N N N |

M "
. 4 n [4 ’
'p|iﬁ AN '|i"ii"ii”i ;’v’ "i"i f
naadan aadn! 1 [At i f {
saadaad g aa e mm e o aa e anddanim
o 0 Gl o0 OO0 O AN 2N AR g A B G ol O PR G OO 2N A OM P OR O ON 2 Gl O O 2N G R AN AR I
T ¢ $ S @SR PP R R P O P R @ S & @ REE P S
X X 7 Q7 &7 Q7K SIS OF Y B (& & P 0 W X & (& Cal &
s° \0\\0@6‘6;\@0“6\'3"* 2 (,7;\\"‘”@\\"0 RO S e@&g\\“@ & 0@_@ & 0 & & ?.}e\‘e'l@o 90"’8 &) @606%@*"’\6 & Y <§'°&
& < <
Figure 5. The runtime overhead of TXSAMPLER.
Code Symptoms Solutions Speedup
1.10 N “dedup [9] ' high capacity abort refine hash table 1.20%
< high synchronous aborts | remove system calls
1.05 g AVL Tree [14] high T\yqir elide read lock 1.21X
gi_ “histo [46] high T,] merge tliansactions 2.95%
1.00 severe false sharing sort the input array
UA [8] high T, merge transactions 1.05X
0.95 # threads vacation [40] high abort rate reduce transaction size| 1.21X
’ 1 2 4 8 14 “LevelDB [11, 13] high abort rate split transactions 1.05%
. . . . * 1 1,
Figure 6. The average runtime overhead with variance S5CA2 [7] = hhlghﬂruthb - ‘iefg]i tmnsact‘?m 1.10%
. . . igh conflict abor shrink transactions
bars according to different thread counts across all STAMP netdedup [46] rrop fynchronous aborts | remove system calls | 20X
benchmarks. . . high abort rate limit transaction size
linkedlist [23] & 3.78%
low average abort penalty | with auxiliary locks)

time decomposition

small-1] non-CS lock_waiting
small-2 — HTM W TX-overhead
small-3 m

large-1 |m Il fallback

large-2 | I
large-3 |

small-1 abort decomposition B conflicts
small-2 i
small-3 capacity
large-1

large-2

large-3 i

abort weight decomposition

I conflicts_weight
capacity_weight

Figure 7. CLOMP-TM data from TxSAMPLER.

Different behaviors across inputs. The top of Figure 7 is
the CPU cycles decomposition. For small transactions, re-
gardless of the inputs, TxSAMPLER reports high HTM over-
head T,j,, which matches our intuition that small transactions
have relatively higher overhead. For large transactions, we
can see that with low conflicts and small footprint (input 1),
most of the execution time is in transactions T;, and there
are nearly no aborts. For high conflicts (input 2), most of
the time is spent in lock waiting T,,;;; also it has a large
number of conflict aborts and the weight associated with
the abort computed by TxSAMPLER is high. For input 3 with
large memory footprint, TXSAMPLER reports a larger portion
of capacity aborts compared to high conflicts.

Different performance between configurations. We ob-
tain two insights from studying CLOMP-TM: (1) With low
conflicts, large transactions perform better, and (2) with high
conflicts, small transactions perform better. TXSAMPLER pro-
vides the data to explain these observations. First, with low
conflicts, both small and large transactions rarely fall into
the slow paths, so they both have small T,,4;; and T¢y,. Thus,
the overhead T, has a high impact on the performance. As
small transactions have larger T,, they perform worse than

Table 2. Optimization overview (* newly found).

large ones. Second, with high conflicts, small transactions
have better performance than large ones. By causing a large
number of aborts, large transactions have more execution
time in Ty,;; and Ty, since large transactions incur higher
abort penalty and serializing large transactions is more costly
than small ones.

7.3 HTM Program Characterization.

Figure 8 categorizes all the benchmarks we have studied
based on two metrics—the critical section duration ratio r.
and the abort/commit ratio r,/.. The critical section dura-
tion ratio r.s computed as T/w, quantifies the significance of
critical sections in each program. Empirically, if r.s < 0.2,
the program does not benefit much from optimizing transac-
tions; we categorize these programs in Type I. Otherwise, we
further classify programs into two types according to r4/c.
If rq/c < 1, the program belongs to Type II since it usually
suggests overall low transaction conflicts according to our
experience. However, there are still optimization opportuni-
ties such as reducing T, and increasing the commit rate of
specific transactions. The remaining programs, falling into
Type III, are usually worth optimizating to alleviate conflicts
inside transactions. Table 2 overviews our optimization for
some programs in Type II and IIL.

8 Case Study

In this section, we study several programs with HTM-related
performance bottlenecks, which are newly found by TxSam-
PLER, and demonstrate how TXSAMPLER guides intuitive opti-
mization with its decision tree model. More case studies
are in the supplementary material, which is available at
https://github.com/ScalableMachinesResearch/TxSampler

193

TXSAMPLER

PARSEC3/netstreamcluster, BerkeleyDB, Memcached, Parboil/histo, 8
QuakeTM, PBZip2, RMS-TM/UtilityMine, SSCA2, NPB/ua, T g
BART/nufft, stamp/ssca, PARSEC2/dedup, PARSEC3/netdedup, "'/\
RMS-TM/ScalParc, PARSEC3/netferret =

| splash2/raytrace
splash2/barnes,
splash2/fmm,
splash2/ocean,
splash2/water

LevelDB, AVLTree, syncrho/linkedlist,
synchro/skiplist, bplustree, Lee-TM,
KyotoCabinet, stamp/yada, stamp/intruder,
stamp/vacation, stamp/kmeans,
stamp/genome, stamp/labyrinth

CS > 20%

JIuuwod

CS < 20%

Figure 8. Application categorization.

8.1 PARSEC2 Dedup

Dedup, a PARSEC benchmark, compresses data via dedu-
plication. It employs pipeline parallelism, which consists of
three major stages: ChunkProcess, FindAllAnchors, and
Compress. By default, Dedup assigns four threads to each
of the three stages. We iteratively optimize this benchmark
based on the guidance from TxSAMPLER. The red dotted ar-
rows and the numbers in Figure 1 show how TxSAMPLER
traverses the decision tree to reach the optimization guidance
step by step.

As shown in Figure 1, TXSAMPLER with its time analysis (1)
reports significant (38% of the total execution) time inside
critical sections and (2) identifies that T,,4;; accounts for 78%
of the execution time in critical sections, making it worth
of abort analysis (3). We sort abort weight and repeat (3) to
narrow down our focus on a function hashtable_search
inside the transaction as shown in Figure 9, a screenshot of
TxSamPLER’s GUL

The GUI consists of three panes: the top one displays the
source code; the bottom left one presents the program struc-
tures; the bottom right one shows the metrics associated with
program contexts. Specifically, if a sample is inside a trans-
action, its in-transaction call path will be attributed under
a node labelled begin_in_tx. With the abort analysis (4),
Figure 9 reveals that hashtable_search, inside a critical
section, within its call path accounts for 7.8% of the total
abort weight. Furthermore, there are 9.8% capacity aborts
attributed to this line. TXSAMPLER recognizes that the large
memory footprint (5) of the transaction causes high capacity
abort rate, which is the root cause of the bottleneck.

With source code study, we find that the problematic code,
searching for an item in a linked list associated with a hash
table entry, resides in the conflict resolution path of the hash
table. As the linked list is a cache-unfriendly data structure,
the memory footprint can become large due to the random-
access pattern, which leads to excessive capacity aborts. Fur-
thermore, the frequent update and search on the linked list
also incur a lot of conflict aborts. These findings lead us to
investigate the implementation of the hash function.

We notice that only 2.2% of hash table slots have been oc-
cupied, and the occupied slots have a long linked list of keys

194

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

*% hashtable.c *% encoder.c B =8

228 pthread mutex t *ht_lock = hashtable getlock(cache, (void *)k a
#endif

1 pthread mutex lock(ht_lock);

2 fendif

if (({entry = hashtable search (cache,

(void *)key)) == NULL) ({|

*% Calling Context View 53| %, Callers View| fi. Flat View =0

4 36| [F A ul -

Scope Abort weight Capacity abort

v <thread root> 1.72e+09 67.2% 9.99e+04 72.9%

w B ChunkProcess 1.17e+08 45.9% 6.48e+04 47.3%

w loop at encoder.c: 332 1.17e+09 45.9% 6.48e+04 47.3%

~ B 347: sub_ChunkProcess 1.17e+09 45.9% 6.48e+04 47.3%

v B 231:tm begin 1.17e+09 45.9% 6.48e+04 47.3%

175: begin_in tx|Pseudgfnode 1.17e+09 45.9% 6.42e+04 47.3%

1

InHTM JL L

Figure 9. TXSAMPLER’s report for Dedup, showing a problem-
atic critical section.

B¥ 1037: hashtable search 1.99e+08 7.8% .35e+04 9.8% ¥

since many entries are mapped to the same slots. Our opti-
mization is to improve the hash function to balance the distri-
bution of hash keys. In the function hash() in hashtable.c,
we delete all the bit shifting operations involved in comput-
ing the hash key and bitwise XORed the key with lower 32
bits of itself. This change improves the utilization of the hash
table to 82% and reduces capacity aborts by 97%.

Re-applying abort analysis (3) and (4), TXSAMPLER iden-
tifies another problematic transaction in write_file func-
tion, where 78% aborts are synchronous aborts due to sys-
tem calls (6). As write_file is only executed by the master
thread, we move system calls outside of the critical section,
which reduces the synchronous aborts by 26%.

In summary, after applying all these optimizations guided
by TxSAMPLER, we speed up the entire program by 1.20X.

8.2 LevelDB

LevelDB [13] is an embedded key-value database based on
Google’s BigTable structure, and we examine its HTM im-
plementation [11]. We use the benchmarking tool db_bench
released along with LevelDB to evaluate its performance. We
keep the default configuration except setting —-num parame-
ter as 200, 000 and launch it with 14 threads.

TxSAMPLER’s time analysis shows that Level DB consumes
47% of the total execution time in critical sections. Reported
by the abort analysis, abort/commit ratio is as high as 2.8
and the aborts are mostly due to conflicts. Around 97% of
the aborts occur in the method db_->Get() called from
ReadRandom(). After examining the Get () method, we find
that two transactions at this function start and end are prob-
lematic. In the first transaction, the reference counts of three
shared objects are incremented with their own Ref methods,
while decremented later in the second transaction with their
own Unref methods. The Unref method also deletes the ob-
ject itself when the reference count reaches 0. As db_->Get ()
is called extensively by all the threads, these shared-reference
counts incur high transactional aborts.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

1 for (i = 0;
2 const unsigned int value = img[i];
3 TM_BEGIN();

4 if (histo[value]l < UINT8_MAX)

5

6

7

i<img_widthximg_height; ++i) {

++histo[valuel;
TM_END () ;
¥

Listing 3. Original HTM implementation in Histo.

1 for (i = 0; i<img_width*img_height/txn_gran+1;

2 TM_BEGIN();

3 for(j=0; j<txn_gran && (i*txn_gran+j)<img_widthx*
img_height; j++){

++i) {

4 const unsigned int value = img[i*xtxn_gran+j];
5 if (histo[valuel < UINT8_MAX)

6 ++histo[valuel;

7}

8 TM_ENDQ);

9}

Listing 4. Optimized HTM implementation in Histo.

TxSAMPLER suggests to reduce transaction sizes to avoid
high abort penalty. We split the two transactions and thus ob-
tain smaller transactions that only include shared reference
count updates. The change is safe since these shared coun-
ters are only used in db_->Get () after initiation and counter
incrementing and decrementing are placed before and after
any other operations respectively to guarantee consistency.
This optimization reduces the abort/commit rate from 2.8
to 0.38 yielding a 2.06X speedup in function ReadRandom()
and a 1.05X speedup for the entire execution.

8.3 Parboil Histo

Histo, a Parboil benchmark, computes a histogram of a 2D-
array with a maximum bin count of 255 [46]. In the main
function, it iterates a 2D-array and updates the histo array
in a critical section, protected by OpenMP omp critical. We
replace the OpenMP implementation with HTM and evaluate
it with 14 threads under two different inputs with the same
size: Input-1 results in an unevenly distributed output while
Input-2 leads to a more evenly distributed result. It is worth
noting that HTM-based Histo runs much faster than the
original OpenMP-based version.

We use TxSAMPLER to study the performance of HTM-
based Histo implementation further. TXSAMPLER reports that
the HTM overhead Ty, is high: more than 40% of the total ex-
ecution time for both inputs. Thus, TXSAMPLER suggests fus-
ing small transactions into a large one to reduce HTM over-
head. Listing 3 shows the original code: a small transaction is
in a loop nest. We optimize it by coalescing every txn_gran
iterations into one large transaction as shown in Listing 4. In
practice, we set txn_gran to 10,000 for Input-1 and 1,000 for
Input-2. For Input-1, this optimization reduces T, to 0.3%
of the total execution time, yielding a 2.95X speedup.

However, for Input-2, the application is slightly slowed
down even though T, of the total execution time is reduced
to 0.6%. TxSAMPLER further reports that the abort/commit
ratio increases dramatically from 0.002 to 5.7, which leads
to high abort penalty. TXSAMPLER suggests there are a large

195

Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu

number of false sharings when incrementing the histo ar-
ray. We sort the input 2D-array first so that each thread
could have a more concentrated access footprint based on
the OpenMP static scheduling strategy. This sorting opera-
tion reduces the false sharing metric by more than 99% and
the abort/commit ratio is improved to 3.7, yielding a 2.91x
speedup.

It is worth noting that our optimized transaction imple-
mentation of Histo outperforms its implementation with
atomic operations by 2.32x.

9 Related Work

Tools such as PGI's PGPROF [48], OpenSpeedShop [44], Ora-
cle Solaris Studio [42], and HPCToolkit [4] use PMU sampling
to monitor threaded codes with low measurement overhead.
However, these tools do not handle HTM particularly, result-
ing in attributing all the PMU samples to fallback paths and
no insight into transaction internals. In this section, we only
review the profilers specific to TM.

9.1 Profilers for STM

There are several tools [22, 38, 51, 52] to identify performance
bottlenecks in STM systems. None of these profilers can
directly apply to HTM. First, STM profilers can monitor the
read and write sets maintained by STM runtime systems,
which are not accessible to software in HTM. Furthermore,
tracking memory accesses in transactions may incur high
overhead. The runtime overhead can be easily larger than
30x, which may disturb transaction execution. Finally, STM
and HTM have different behaviors, so the insights obtained
from STM may not apply to HTM.

9.2 Profilers for HTM

HTM runtime systems capture the status code of each trans-
action instance recorded by the HTM hardware. From the
status code, one can know whether the transaction aborts
or commits, and if an abort, what the abort reason is. To
provide deeper insights, Gaudet developed Transactional
Event Profiler (TEP) [20] for IBM Blue Gene/Q (BGQ) TM.
It extracts the events from the status code, logs them in a
memory buffer, and visualizes the traces. A drawback of this
approach is the high memory overhead. Score-P [32] instru-
ments BGQ TM and aggregates all the abort/commit events
across all transaction instances and presents them in full
calling contexts. However, Score-P may incur high runtime
overhead, especially for small transactions in loops.

TSXProf To reduce both runtime and memory overhead
and provide more profound insights, Liu et al. developed
TSXProf [39], based on the record-and-replay technique. It
uses lightweight timestamp counters to record HTM execu-
tion (the record phase) and replays transactions to obtain
more information (calling contexts, abort rate, transaction

TXSAMPLER

contention set, etc.) with auxiliary TM libraries. We distin-

guish TxSAMPLER from TSXProf from the following aspects:

e Overhead. TxSAMPLER only requires one pass execution
and incurs ~4% runtime overhead on average, while TSX-
Prof needs at least two-pass executions. Although the
record phase (first phase) of TSXProf is lightweight, the
replay phase can introduce high overhead due to (1) the
heavyweight instrumentation to a transaction’s read and
write sets and (2) the costly calling context determination
(> 3% overhead). The memory overhead is less than 5MB
per thread on average for TXSAMPLER since it merges the
metrics under the same calling context. As TSXProf has
to record all the attempted transactions into a trace file in
the first phase, the required disk usage is proportional to
the number of attempted transactions and abort rate.

e Time decomposition. TXSAMPLER can provide the time
decomposition view of each transaction as shown in Sec-
tion 4 but TSXProf does not.

Perf Perf[35] can use hardware events to sample programs

to monitor transactions with low overhead. It pinpoints

hotspots in transactions by sampling CPU cycles and uses
transaction-related events to identify aborts and their rea-
sons. We distinguish TxSAMPLER from Perf as follows:

e Time decomposition. Unlike TXSAMPLER’s time analysis,
Perf does not quantify the cycles in different components
of an HTM-based critical section.

e Calling context. Perf can also utilize LBR to reconstruct
the full calling contexts. However, the calling contexts may
be incomplete due to the limited number of LBR entries.
TxSAMPLER uses call stack unwinding to construct the
calling contexts outside transactions and takes advantage
of LBR to deduce the calling contexts inside transactions,
which can maximally preserve the context information.

e Comprehensive optimization suggestions. Perf does
not provide detailed optimization guidance as TXSAMPLER
does in Figure 1.

Intel VTune Intel VTune [27], another state-of-the-art
sampling-based tool, provides two analyses (tsx-hotspots
and tsx-exploration) for HTM applications. The
tsx-hotspots analysis uses the hardware event to identify
the performance-critical sections inside transactions. VTune
can enable Processor Trace (PT) to obtain additional cycle
and instruction information but with higher overhead. The
tsx-exploration analysis uses the TSX related events to
understand the behavior of transactions such as the number
of aborts and wasted cycles due to aborts. We distinguish
TxSaMPLER from VTune as follows:

e Time decomposition. Similar to Perf, VTune does not
quantify the cycles in different components of an HTM-
based critical section as well.

¢ Calling context. VTune, utilizing LBR only, does not pro-
vide full calling context inside HTM, while TXSAMPLER

196

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

uses LBR and call stack unwinding to construct calling
contexts for all analyses even inside HTM.

o Comprehensive optimization suggestions. VTune
does not provide detailed decision-tree based optimiza-
tion guidance.

In summary, Perf and VTune are state-of-the-art sampling-
based profilers. However, they are hard to pinpoint problem-
atic transactions with pathology in time analysis as shown
in Histo (Section 8.3), SSCA2, UA, and AVL tree. Since they
do not provide contention analysis, they do not distinguish
whether the contention is true or false sharing (e.g., the Histo
benchmark in Section 8.3). Furthermore, the time compo-
nent information can guide users to target the transactions
worthy of optimization.

10 Limitations

Like other sampling-based tools such as Vtune and Perf,
TxSAMPLER has the following limitations: (1) The sampling
strategy only identifies statistically significant performance
issues; (2) the profiling result depends on the input; (3)
the sampling rate should be adjusted manually. TXSAMPLER
currently works on Intel TSX. However, modifications to
adapt to POWERPC machines (e.g. Blue Gene/Q, zEC12 and
POWERS) are minimal. The accuracy of abort analysis on
a different architecture depends on the PMU counters. For
instance, Intel cores only give 6 kinds of abort reasons while
POWERS provides 11.

11 Conclusions

TxSAMPLER is a sampling-based lightweight call path profiler
for programs using hardware transactional memory. TxSam-
PLER provides insights of time decomposition, PMU metrics
of aborts and commits, and memory contention of hardware
transactions. We have adapted HTM runtime library to sup-
port sampling better. The proposed extensions to the HTM
runtime library are lightweight and simple to implement.
Standardizing our proposed extensions will enable perfor-
mance tools to take advantage of lightweight HTM moni-
toring on multiple architectures. We have demonstrated the
strength of TxSAMPLER on a newly developed HTMBench
suite to showcase its low overhead, superior scalability, and
rich user interfaces. TXSAMPLER’s systematic approach to
tackling performance issues in HTM codes is effective — with
little effort we were able to identify intricate performance
losses arising from hardware-software interactions in a suite
of complex HTM applications unfamiliar to us and were able
to optimized them to yield speedups as high as 3.78x.

Acknowledgments

We thank anonymous reviewers for their valuable comments.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

References
[1] 2017. linux/intel-pt.txt at master - torvalds/linux. https://github.com/

—
Do
—

—
w
—_

—
w
[

[10

(11

[12

[13

[14

(15

(16

(17

(18

—

]

—

—

]

]

]

—

—

—

torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt.
(Accessed on 04/06/2018).

2017. Memcached. https://memcached.org.

2017. RDTSC: Read Time-Stamp Counter (x86 Instruction Set Refer-
ence). https://c9x.me/x86/html/file_module_x86_id_278.html. (Ac-
cessed on 10/25/2017).

L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. 2010. HPCTOOLKIT: Tools for Perfor-
mance Analysis of Optimized Parallel Programs Http://Hpctoolkit.Org.
Concurr. Comput. : Pract. Exper. 22, 6 (April 2010), 685-701. https:
//doi.org/10.1002/cpe.v22:6

Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, and Justin Gottschlich.
2012. Draft Specification of Transactional Language Constructs for
C++. https:/sites.google.com/site/tmforcplusplus. (2012).
Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Lujan, Chris
Kirkham, and Ian Watson. 2008. Lee-TM: A Non-trivial Benchmark for
Transactional Memory. In ICA3PP *08: Proceedings of the 7th Interna-
tional Conference on Algorithms and Architectures for Parallel Processing.
LNCS, Springer.

David Bader and Kamesh Madduri. 2005. Design and implementation
of the HPCS graph analysis benchmark on symmetric multiprocessors.
High Performance Computing—HiPC 2005 (2005), 465-476.

D. H. Bailey, E. Barszcz, et al. 1991. The NAS parallel benchmarks
- summary and preliminary results. In Proc. of the 1991 ACM/IEEE
conference on Supercomputing (Supercomputing *91). ACM, New York,
NY, USA, 158-165.

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. 2000. A
Portable Programming Interface for Performance Evaluation on Mod-
ern Processors. The International Journal of High Performance Com-
puting Applications 14, 3 (Fall 2000), 189-204. citeseer.ist.psu.edu/
browne00portable.html

Vamsi Chitters, Adam Midvidy, and Jeff Tsui. 2013. Reducing Synchro-
nization Overhead Using Hardware Transactional Memory. Technical
Report. Technical report, University of California at Berkeley, Berkeley
CA.

CIiff Click. 2009. Azul’s Experiences with Hardware Transactional
Memory. In 2009 Transaction Memory Workshop.

Jeff Dean and Sanjay Ghemawat. 2011. LevelDB: A Fast Persis-
tent Key-Value Store. https://opensource.googleblog.com/2011/07/
leveldb-fast-persistent-key-value-store.html

Dave Dice, Alex Kogan, and Yossi Lev. 2016. Refined transactional
lock elision. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM, 19.

Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. 2009. Early
Experience with a Commercial Hardware Transactional Memory Im-
plementation. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS XIV). ACM, New York, NY, USA, 157-168. https:
//doi.org/10.1145/1508244.1508263

Alexandre Eichenberger et al. 2014. OpenMP Technical Report 2 on
the OMPT Interface. http://www.openmp.org/wp-content/uploads/
ompt-tr2.pdf.

embedded2016. 2016. GitHub - embedded2016/bplus-tree: B+ tree
implementation in C. https://github.com/embedded2016/bplus-tree.
(Accessed on 08/18/2017).

Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M.
Aamodt. 2011. Hardware Transactional Memory for GPU Architec-
tures. In Proceedings of the 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-44). ACM, New York, NY, USA,
296-307. https://doi.org/10.1145/2155620.2155655

197

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu

Vladimir Gajinov, Ferad Zyulkyarov, Osman S Unsal, Adrian Cristal,
Eduard Ayguade, Tim Harris, and Mateo Valero. 2009. QuakeTM: paral-
lelizing a complex sequential application using transactional memory.
In Proceedings of the 23rd international conference on Supercomputing.
ACM, 126-135.

Matthew Gaudet. 2014. Serialization Management Driven Performance
in Best-Effort Hardware Transactional Memory Systems. Master disser-
tation. University of Alberta.

Jeff Gilchrist. 2015. Parallel BZIP2 (PBZIP2). http://compression.ca/
pbzip2/. (Accessed on 08/25/2017).

Justin E. Gottschlich, Maurice P. Herlihy, Gilles A. Pokam, and
Jeremy G. Siek. 2012. Visualizing Transactional Memory. In Proceed-
ings of the 21st International Conference on Parallel Architectures and
Compilation Techniques (PACT ’12). ACM, New York, NY, USA, 159-170.
https://doi.org/10.1145/2370816.2370842

Vincent Gramoli. 2015. More than you ever wanted to know about
synchronization: synchrobench, measuring the impact of the synchro-
nization on concurrent algorithms. In ACM SIGPLAN Notices, Vol. 50.
ACM, 1-10.

Part Guide. 2016. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual. Volume 3C: System programming Guide, Part 3 3C
(2016).

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-free Data Structures. In Proceedings
of the 20th Annual International Symposium on Computer Architecture
(ISCA ’93). ACM, New York, NY, USA, 289-300. https://doi.org/10.
1145/165123.165164

IBM. 2015. z/Architecture Principles of Opera-
tion. http://www-01.ibm.com/support/docview.wss?uid=
isg2b9de5f05a9d57819852571c500428f9a. SA22-7832-09 (2015).

Intel 2013. Intel VTune Amplifier XE 2013. http://software.intel.com/
en-us/intel-vtune-amplifier-xe. Last accessed: Dec. 12, 2013.

Intel Corp. NA. Hardware Event-based Sampling Collection. https:
//software.intel.com/en-us/node/544067.

Intel Corp. NA. Intel Microarchitecture Codename Ne-
halem Performance Monitoring Unit Programming Guide.
https://software.intel.com/sites/default/files/m/5/2/c/f/1/
30320-Nehalem-PMU-Programming-Guide-Core.pdf.

Intel Corporation. 2010. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B: System Programming Guide, Part 2,
Number 253669-032.

Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software
Developer’s Manual.

Jie Jiang, Peter Philippen, Michael Knobloch, and Bernd Mohr. 2014.
Performance Measurement and Analysis of Transactional Memory and
Speculative Execution on IBM Blue Gene/Q. Springer International
Publishing, Cham, 26-37.

Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Mod-
ern Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Gokecen Kestor, Vasileios Karakostas, Osman S Unsal, Adrian Cristal,
Ibrahim Hur, and Mateo Valero. 2011. RMS-TM: A comprehensive
benchmark suite for transactional memory systems. In ACM SIGSOFT
Software Engineering Notes, Vol. 36. ACM, 335-346.

Andreas Kleen. 2013. Intel Transactional Synchronization Extensions
(Intel TSX) profiling with Linux perf. https://goo.gl/BlltQ4. 3 May
2013.

FAL Labs. 2011. Kyoto Cabinet: a straightforward implementation of
DBM. http://fallabs.com/kyotocabinet/. (Accessed on 08/18/2017).
Lawrence Livermore National Laboratory. 2014. LLNL Coral Bench-
marks. https://asc.linl.gov/CORAL-benchmarks. Last accessed: Dec.
12, 2013.

Yossi Lev. 2010. Debugging and Profiling of Transactional Programs.
Ph.D. dissertation. Brown University.

https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt
https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt
https://memcached.org
https://c9x.me/x86/html/file_module_x86_id_278.html
https://doi.org/10.1002/cpe.v22:6
https://doi.org/10.1002/cpe.v22:6
https://sites.google.com/site/tmforcplusplus
citeseer.ist.psu.edu/browne00portable.html
citeseer.ist.psu.edu/browne00portable.html
https://opensource.googleblog.com/2011/07/leveldb-fast-persistent-key-value-store.html
https://opensource.googleblog.com/2011/07/leveldb-fast-persistent-key-value-store.html
https://doi.org/10.1145/1508244.1508263
https://doi.org/10.1145/1508244.1508263
http://www.openmp.org/wp-content/uploads/ompt-tr2.pdf
http://www.openmp.org/wp-content/uploads/ompt-tr2.pdf
https://github.com/embedded2016/bplus-tree
https://doi.org/10.1145/2155620.2155655
http://compression.ca/pbzip2/
http://compression.ca/pbzip2/
https://doi.org/10.1145/2370816.2370842
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164
http://www-01.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
http://www-01.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/node/544067
https://software.intel.com/en-us/node/544067
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://goo.gl/BlltQ4
http://fallabs.com/kyotocabinet/
https://asc.llnl.gov/CORAL-benchmarks

TXSAMPLER

[39] Yujie Liu, Justin Gottschlich, Gilles Pokam, and Michael Spear. 2015.

(40

[41

[43

[44

(45

[46

(47

(48

(49

(50

[51

[52

[t

—

—

—

=

—

—

—

—_ =

—

—

—

TSXProf: Profiling Hardware Transactions. In Proceedings of the 2015 In-
ternational Conference on Parallel Architecture and Compilation (PACT)
(PACT ’15). IEEE Computer Society, Washington, DC, USA, 75-86.
https://doi.org/10.1109/PACT.2015.28

Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M Michael,
and Hisanobu Tomari. 2015. Quantitative comparison of hardware
transactional memory for blue gene/q, zenterprise ec12, intel core, and
power8. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. ACM, 144-157.

Oracle. 2007. Oracle Berkeley DB. http://www.oracle.com/
technetwork/database/database-technologies/berkeleydb/overview/
index.html. (Accessed on 08/18/2017).

Oracle. 2017. Oracle Solaris Studio. http://www.oracle.com/
technetwork/server-storage/solarisstudio/overview/index.html.
Martin Schindewolf, Barna Bihari, John Gyllenhaal, Martin Schulz,
Amy Wang, and Wolfgang Karl. 2012. What scientific applications can
benefit from hardware transactional memory?. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 90.

Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David
Montoya, and Scott Cranford. 2008. OpenSpeedShop: An open source
infrastructure for parallel performance analysis. Sci. Program. 16, 2-3
(April 2008), 105-121.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. 1992.
SPLASH: Stanford parallel applications for shared-memory. ACM
SIGARCH Computer Architecture News 20, 1 (1992), 5-44.

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing 127 (2012).

Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-Crummey.
2010. Scalable Identification of Load Imbalance in Parallel Executions
Using Call Path Profiles. In SC 2010 International Conference for High-
Performance Computing, Networking, Storage and Analysis. ACM, New
York, NY, USA.

The Portland Group. 2011. PGPROF Profiler Guide Parallel Profiling for
Scientists and Engineers. http://www.pgroup.com/doc/pgprofug.pdf.
Martin Uecker, Frank Ong, Jonathan I Tamir, Dara Bahri, Patrick Virtue,
Joseph Y Cheng, Tao Zhang, and Michael Lustig. 2015. Berkeley
advanced reconstruction toolbox. In Proc. Intl. Soc. Mag. Reson. Med,
Vol. 23. 2486.

Richard M Yoo, Christopher] Hughes, Koonchun Lai, and Ravi Rajwar.
2013. Performance evaluation of Intel® transactional synchronization
extensions for high-performance computing. In High Performance
Computing, Networking, Storage and Analysis (SC), 2013 International
Conference for. IEEE, 1-11.

Ferad Zyulkyarov, Srdjan Stipic, Tim Harris, Osman S. Unsal, Adrian
Cristal, Ibrahim Hur, and Mateo Valero. 2010. Discovering and Un-
derstanding Performance Bottlenecks in Transactional Applications.
In Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT °10). ACM, New York, NY,
USA, 285-294. https://doi.org/10.1145/1854273.1854311

Ferad Zyulkyarov, Srdjan Stipic, Tim Harris, Osman S. Unsal, Adrian
Cristal, Ibrahim Hur, and Mateo Valero. 2012. Profiling and Optimizing
Transactional Memory Applications. International Journal of Parallel
Programming (2012).

198

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

https://doi.org/10.1109/PACT.2015.28
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.pgroup.com/doc/pgprofug.pdf
https://doi.org/10.1145/1854273.1854311

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

A Artifact Appendix
A.1 Abstract

We have prepared a three-part artifact evaluation:

Overhead of TxSAmMPLER: We reproduce the overhead of
execution time as shown in Figure 5 in the paper.

Speedup after optimization: We reproduce the speedup of
optimized applications as shown in Table 2 in the paper.

Profile Analysis We run TXSAMPLER on the case studies
discussed in Section 8 and produce profiles databases. One
can view the generated profiles with HPCViewer to navigate
the performance problems and optimization opportunities
as discussed in the paper.

A.2 Artifact check-list (meta-information)

e Program: TXSAMPLER

Compilation: gcc -03

e Data set: RMS-TM, parboil, parsec-2.1, parsec-3.0,
stamp-0.9.10, bart, Lee, splash2

e Run-time environment: Linux 3.10.0

e Hardware: Intel Xeon Haswell and its successors with
Hardware Transactional Memory supported

e Execution: python/bash script

e Output: Figures, text files and TxSAMPLER Profiles

How much disk space required (approximately)?:

100GB

Publicly available?: Yes

A.3 Description
A.3.1 How delivered

All the source codes and inputs of TxSAMPLER and HTM programs
are delivered via github and Google drive.

A.3.2 Hardware dependencies

The hardware should be Intel Xeon Haswell and its successors with
Transactional Synchronization Extensions (TSX) supported.

A.3.3 Software dependencies

We need Docker CE and Java SE. We have tested TXSAMPLER on
Linux 3.10.0. We noticed a problem in Linux 4.x, which seems to
have incompatibility with PAPI 5.5.0 version we use when using
four hardware performance counters. We will make an effort to
eliminate the dependency on PAPI in the future, which was not
possible in the short deadline of the artifact evaluation.

A.3.4 Data sets

RMS-TM, parboil, parsec-2.1, parsec-3.0, stamp-0.9.10, bart, Lee,
splash2.

A.4 Installation

To avoid the complexity of installing all the dependencies, we have
prepared a docker file so that users can build their docker image
and perform all the experiments inside the docker. Please refer to
https://github.com/jqswang/txsampler-ae for detailed instructions.

199

Qingsen Wang, Pengfei Su, Milind Chabbi, and Xu Liu

A.5 Experiment workflow

Follow the instructions
https://github.com/jgswang/txsampler-ae to build and run
the docker image. Once inside the container, download the
benchmark suite and input by the following command, and then
set the environmental variables.

shown in

1 $ get_benchmark_and_input.sh
2 $ cd /data/txsampler_benchmark
3 $ source set_env

Edit /data/txsampler_benchmark/run.conf to modify the num-
ber of threads and the CPU affinity setting instructed in the file
comment.

The /data directory inside the container is mapped to . /mydata
directory from the host, which can be used to transfer files between
the container and the host.

A.5.1 Overhead of TXSAMPLER

Use following command to generate the figure of runtime overhead
similar to Figure 5.

1 $ measure_overhead.py all

The generated figure is under the current directory.

A.5.2 Speedup after optimization

Issue the following command to measure the speedup of optimized
applications as shown in Table 2.

1 $ measure_speedup.py all

The result is shown in the standard output.

A.5.3 Profile analysis

Issue the command to produce profile databases:

1 $ generate_profile.py -1 # list available applications
2 $ generate_profile.py [application name]

One can use HPCViewer to open the database directory and check
the result. HPCViewer prebuilt on different platforms is available
at http://hpctoolkit.org/download/hpcviewer/.

A.6 Evaluation and expected result

Depending on the hardware and the configuration of thread number
and core binding, the result may be different from the one presented
in the paper.

A.6.1 Overhead of TXSAMPLER

The generated figure is similar to Figure 5. The overhead of a specific
application should be between 0 ~ 20% and the geo-mean is less
than 10%.

A.6.2 Speedup after optimization

In the speedup analysis, the speedup number will be shown in the
terminal which is like Table 2. The speedup should be nontrivial
but the exact speedup number is sensitive to the configuration.

http://hpctoolkit.org/download/hpcviewer/

TXSAMPLER PPoPP ’19, February 16-20, 2019, Washington, DC, USA

A.6.3 Profile analysis

One can follow Figure 1 to find optimization opportunities. Sec-
tion 8.1 provides detailed instructions. The metric pane shows many
metrics, from which we can derive new metrics. For example, the
capcity abort inFigure 9 is the sum of capacity abort readand
capacity abort write. For backup, we have also provided a pro-
file database of dedup (see https://github.com/jqswang/txsampler-
ae), which can be directly opened by HPCViewer.

200

	Abstract
	1 Introduction
	2 Background
	3 TxSampler: Methodology
	3.1 Challenge I: Handle Aborts due to Interrupts
	3.2 Challenge II: Attribute to Components
	3.3 Challenge III: Analyze Contention
	3.4 Challenge IV: Attribute to Call Path

	4 TxSampler's Time Analysis
	5 TxSampler's Abort Analysis
	6 TxSampler Implementation
	7 Evaluation
	7.1 TxSampler's Overhead.
	7.2 TxSampler's Correctness
	7.3 HTM Program Characterization.

	8 Case Study
	8.1 PARSEC2 Dedup
	8.2 LevelDB
	8.3 Parboil Histo

	9 Related Work
	9.1 Profilers for STM
	9.2 Profilers for HTM

	10 Limitations
	11 Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result

